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Abstract

We provide theoretical and empirical evidence that using tighter evidence lower
bounds (ELBOs) can be detrimental to the process of learning an inference network
by reducing the signal-to-noise ratio of the gradient estimator. Our results call into
question common implicit assumptions that tighter ELBOs are better variational
objectives for simultaneous model learning and inference amortization schemes,
suggesting that further investigation is required to assess the relative utility of
different approaches. Our results hint that it may be beneficial to use different
targets for training the generative and inference networks.

1 Introduction

Variational bounds provide tractable and state-of-the-art objectives for training deep generative
models (Kingma and Welling, 2014; Rezende et al., 2014). Typically taking the form of a lower
bound on the intractable model evidence, they provide surrogate targets that are more amenable to
optimization. In general, this optimization requires the generation of approximate posterior samples
during the model training and so a number of methods look to simultaneously learn an inference
network alongside the target generative network. This assists in the training process and provides
an amortized inference artifact which can be used at test time (Kingma and Welling, 2014). The
performance of such methods is critically dependent upon the choice of evidence lower bound (ELBO)
and formulation of the required inference, with the two often intricately linked to one another. For
example, if the inference network formulation is not sufficiently expressive, this can have a knock-on
effect on the generative network unless precautionary steps are taken (Burda et al., 2016).

It is often implicitly assumed in the literature that using tighter ELBOs is universally beneficial and
that larger values of the ELBO indicate a better model. In this work we question these implicit
assumptions by demonstrating that, although using a tighter ELBO is typically beneficial to gradient
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Figure 1: Density of
∇φ ELBO for different K.

updates of the generative network, it can be detrimental to updates of
the inference network, which can then impact the generative network
at future iterations. Specifically, we present theoretical and empirical
evidence that increasing the number of importance sampling particles,K,
to tighten the bound in the importance-weighted auto-encoder (IWAE),
degrades the signal-to-noise ratio (SNR) of the gradient estimates for the
inference network.

An intuitive demonstration of this effect is given in Figure 1. This shows
a kernel density estimation for the distribution of the ELBO gradient esti-
mator with respect to the proposal parameter A for the model discussed
in Section 4 (with D = N = 1) and different K. We see that as we
increaseK, both the amplitude of the gradient and the standard deviation
of the estimator decrease. However, because the former reduces faster,
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the SNR deteriorates. This is perhaps easiest to appreciate by noting that for the larger values of
K, there is a roughly equal probability of the estimator being positive or negative, such that we are
equally likely to increase or decrease the parameter value at the next iteration, inevitably leading to
poor performance. On the other hand, when K = 1, it is far more likely that the gradient estimator
is positive than negative and so there is clear drift to the gradient steps. Note that using a larger K
should always give better performance at test time (Cremer et al., 2017) – the implication of our
result is that it may be better to learn the inference network using a smaller K during training.

2 Background and Notation

Let x be an X -valued random variable defined via a process involving an unobserved Z-valued
random variable z with joint density pθ(x, z). Direct maximum likelihood estimation of θ is generally
intractable if pθ(x, z) is a deep generative model due to the marginalization of z. A common strategy
is to instead optimize a variational lower bound on log pθ(x), defined via an auxiliary inference
model qφ(z|x) as follows

ELBOVAE(θ, φ, x) :=

∫
qφ(z|x) log

pθ(x, z)

qφ(z|x)
dz = log pθ(x)−KL(qφ(z|x)||pθ(z|x)). (1)

Here qφ is usually parameterized by a neural network, for which this approach is known as the
variational auto-encoder (VAE) (Kingma and Welling, 2014). Optimization of ELBOVAE(θ, φ, x) is
performed with stochastic gradient ascent (SGA) using unbiased estimators of∇θ,φ ELBOVAE(θ, φ, x).
If qφ is reparameterizable (Kingma and Welling, 2014), then given a reparameterized sample z ∼
qφ(z|x), the gradients ∇θ,φ (log pθ(x, z)− log qφ(z|x)) can be used for the optimization.

The VAE objective places a harsh penalty on mismatch between qφ(z|x) and pθ(z|x); optimizing
jointly in θ, φ can confound improvements in log pθ(x) with reductions in the KL (Turner and Sahani,
2011). Thus, a major research direction is the development of bounds that separate the tightness of
the bound from the expressiveness of the class of qφ. For example, the IWAE objectives (Burda et al.,
2016), which we denote as ELBOIS(θ, φ, x), are a family of bounds defined by,

QIS(z1:K |x) :=

K∏
k=1

qφ(zk|x), ẐIS(z1:K , x) :=
1

K

K∑
k=1

pθ(x, zk)

qφ(zk|x)
, (2)

ELBOIS(θ, φ, x) :=

∫
QIS(z1:K |x) log ẐIS(z1:K , x) dz1:K ≤ log pθ(x). (3)

The IWAE objectives generalize the VAE objective (K = 1 corresponds to the VAE) and the bounds
become strictly tighter as K increases (Burda et al., 2016). Furthermore, Burda et al. (2016) provide
strong empirical evidence that settingK > 1 leads to significant empirical gains over the VAE in terms
of learning the generative model. More generally, optimizing tighter bounds is usually empirically
associated with better models pθ in terms of marginal likelihood on held out data. Other related
approaches extend this to sequential Monte Carlo (SMC) (Maddison et al., 2017; Le et al., 2017;
Naesseth et al., 2017) or change the lower bound that is optimized to reduce the bias (Li and Turner,
2016; Bamler et al., 2017). A second, unrelated, approach is to tighten the bound by improving
the expressiveness of qφ (Salimans et al., 2015; Tran et al., 2015; Rezende and Mohamed, 2015;
Kingma et al., 2016; Maaløe et al., 2016; Ranganath et al., 2016). In this work we focus on the
former, algorithmic approaches to tighter bounds.

3 Assessing the Signal-to-Noise Ratio of the Gradient Estimators

Increasing K in the IWAE leads to empirical improvements in learning the generative network (Burda
et al., 2016). However, as shown by, for example, Le et al. (2017), when the family of qφ contains
the true posteriors, the global optimum parameters {θ∗, φ∗} are independent of K. Moreover, in any
non-trivial model, we cannot carry out the required optimization analytically, nor even analytically
calculate the gradients of the ELBO. The effectiveness of any particular choice ofK is thus inextricably
linked to our ability to numerically solve the resulting optimization problem. This motivates us to
examine the effectK has on the variance and magnitude of the gradient estimates for the two networks.
We find that increasing K does indeed improve the gradient estimates for the generative network, but
that it can worsen those for the inference network. More precisely, we present a theoretical result
showing that the signal-to-noise ratio of the reparameterization gradients of the inference network for
the IWAE decreases with rate O(1/

√
K).
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As estimating the ELBO requires a Monte Carlo estimation of an expectation over z, we have two
samples sizes to tune for the estimate: the number of samples M used for Monte Carlo estimation
of the ELBO and the number of importance samples K used in the bound construction. Here M
does not change the true value of ∇θ,φ ELBO, only our variance in estimating it, while changing K
changes the ELBO itself, with larger K leading to tighter bounds (Burda et al., 2016). Presuming that
reparameterization is possible, we can express our gradient estimate in the general form

∆M,K :=
1

M

M∑
m=1

∇θ,φ log Ẑm,K where Ẑm,K =
1

K

K∑
k=1

wm,k, wm,k =
pθ(zm,k, x)

qφ(zm,k|x)
, (4)

and each zm,k
i.i.d.∼ qφ(zm,k|x). Note that the case K = 1 corresponds to using the VAE objective,

while one typically uses M = 1 for IWAE training. We will further use ∆M,K (θ) to refer to gradient
estimates with respect to θ and ∆M,K (φ) to refer to gradients estimates with respect to φ.

One might presume that the variance is a good barometer for the effectiveness of a gradient estimation
scheme. While this is blatantly true when the expected gradient estimate is fixed, in need not be for
changes that simultaneously affect both the variance and expected value of the gradient. For example,
because the marginal likelihood estimates Ẑm,K become exact (and thus independent of the proposal)
as K →∞, it must be the case that limK→∞∆M,K(φ) = 0. Thus as K becomes large, the expected
value of the gradient must decrease along with its variance, such that the variance relative to the
problem scaling need not actually improve.

To investigate this effect more concretely, we introduce the notion of a signal-to-noise-ratio:

SNRM,K(θ) =

∣∣∣∣E [∆M,K(θ)]

σ [∆M,K(θ)]

∣∣∣∣ and SNRM,K(φ) =

∣∣∣∣E [∆M,K(φ)]

σ [∆M,K(φ)]

∣∣∣∣ (5)

where σ[·] denotes the standard deviation of a random variable and the SNR is defined separately on
each dimension of the parameter vector. The SNR is thus the absolute value of the expected gradient
scaled by its standard deviation, providing a measure of the relative accuracy of the gradient estimates.
Though a high SNR does not always indicate a good SGA scheme (as the target objective itself might
be poorly chosen), a low SNR is always problematic because it indicates that the gradient estimates
are dominated by noise: if SNR → 0 then the estimates become completely random. We are now
ready to state our main theoretical result.

Theorem 1. Assume that when M = K = 1, the expected gradients; the variances of the gradients;
and the first four moments of w1,1, ∇θw1,1, and ∇φw1,1 are all finite, with the variances also being
non-zero. Then the signal-to-noise ratios of the gradient estimates converge at the following rates

SNRM,K(θ) =
√
M

∣∣∣∣∣∣∣∣
√
K ∇θZ − 1

2Z
√
K
∇θ
(

Var[w1,1]
Z2

)
+O

(
1

K3/2

)√
E
[
w2

1,1 (∇θ logw1,1 −∇θ logZ)
2
]

+O
(

1
K

)
∣∣∣∣∣∣∣∣ = O

(√
MK

)
, (6)

SNRM,K(φ) =
√
M

∣∣∣∣∣∣ ∇φVar [w1,1] +O
(

1
K

)
2Z
√
K σ [∇φw1,1] +O

(
1√
K

)
∣∣∣∣∣∣ = O

(√
M

K

)
(7)

where Z := pθ(x) is the true marginal likelihood.

Proof. We give only an intuitive demonstration of the high-level result here and provide a formal
proof in Appendix A. The effect of M on the SNR ratio follows straightforwardly from using the
law of large numbers on the random variable ∇θ,φ log Ẑm,K . Namely, the overall expectation is
independent of M and the variance reduces at a rate O(1/M). The effect of K is more complicated
but is perhaps most easily seen by noting that (as shown by Burda et al. (2016))

∇θ,φ log Ẑm,K =

K∑
k=1

wm,k∑K
`=1 wm,k

∇θ,φ log
(
wm,k

)
, (8)

such that∇θ,φ log Ẑm,K can be interpreted as a self-normalized importance sampling estimate. We
can, therefore, invoke the known result (see e.g. Hesterberg (1988)) that the bias of a self-normalized
importance sampler converges at a rate O(1/K) and the standard deviation at a rate O(1/

√
K).
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We thus see that the SNR converges at a rate O((1/K)/(1/
√
K)) = O(1/

√
K) if the asymptotic

gradient is 0 and O((1)/(1/
√
K)) = O(

√
K) otherwise, giving the convergence rates in the φ and θ

cases respectively.

The implication of these convergence rates is that increasing M is monotonically beneficial to the
SNR for both θ and φ, but that increasing K is beneficial to the former and detrimental to the latter.
An important point of note is that, for large K, the direction the expected inference network gradient
is independent of K. Namely, because we have as an intermediary result from deriving the SNRs that

E [∆M,K(φ)] = − 1

2KZ2
∇φVar [w1,1] +O

(
1

K2

)
, (9)

we see that the direction of the gradient tends towards −∇φVar [w1,1] / ‖∇φVar [w1,1]‖2 for large
K. This direction is rather interesting: it implies that as K → ∞, the optimal φ is that which
minimizes the variance of the weights. This is well known to be the optimal importance sampling
distribution in terms of approximating the posterior (Owen, 2013). Though it is not also necessarily
the optimal proposal in terms of estimating the ELBO,1 this is nonetheless an interesting equivalence
that complements the results of Cremer et al. (2017). It suggests that increasing K may provide a
preferable target in terms of the direction of the true inference network gradients, creating a trade-off
with the fact that it also diminishes the SNR, reducing the estimates to pure noise if K is set too high.
In the absence of other factors, there may thus be a “sweet-spot” for setting K.

Typically when training deep generative models, one does not optimize a single ELBO but instead its
average over multiple data points, i.e.

J (θ, φ) :=
1

N

N∑
n=1

ELBOIS(θ, φ, x(n)). (10)

Our results extend to this setting because the z are drawn independently for each x(n), so

E

[
1

N

N∑
n=1

∆
(n)
M,K

]
=

1

N

N∑
n=1

E
[
∆

(n)
M,K

]
, Var

[
1

N

N∑
n=1

∆
(n)
M,K

]
=

1

N2

N∑
n=1

Var
[
∆

(n)
M,K

]
(11)

We thus also see that if we are using mini-batches such that N is a chosen parameter and the x(n) are
drawn from the empirical data distribution, then the SNRs of ∆̄N,M,K := 1

N

∑N
n=1 ∆

(n)
M,K scales as√

N , i.e. SNRN,M,K(θ) = O(
√
NMK) and SNRN,M,K(φ) = O(

√
NM/K). Therefore increasing

N has the same ubiquitous benefit as increasing M . In the rest of the paper, we will implicitly be
considering the SNRs for ∆̄N,M,K , but will omit the dependency on N to simplify the notation.

4 Experiments

Our convergence results hold exactly in relation to M (and N ) but are only asymptomatic in K due
to the higher order terms. Therefore their applicability should be viewed with a healthy degree of
skepticism in the small K regime. With this in mind, we now present empirical support for our
theoretical results and test how well they hold in the small K regime using a simple Gaussian model,
for which we can analytically calculate the ground truth.

Consider a family of generative models with RD–valued latent variable z and observed variable x:
z ∼ N (z;µ, I), x|z ∼ N (x; z, I), (12)

which is parameterized by θ := µ. Let the inference network be parameterized by φ = (A, b), A ∈
RD×D, b ∈ RD where qφ(z|x) = N (z;Ax+ b, 23I). Given a dataset (x(n))Nn=1, we can analytically
calculate the optimum of our target J (θ, φ) as explained in Appendix B, giving θ∗ := µ∗ =
1
N

∑N
n=1 x

(n) and φ∗ := (A∗, b∗), where A∗ = I/2 and b∗ = µ∗/2. For this particular problem,
the optimal proposal is independent of K. This will not be the case in general unless the family of
possible qφ contains the the true posteriors pθ(z|x(n)). Further, even for this problem, the expected
gradients for the inference network still change with K.

To conduct our investigation, we randomly generated a synthetic dataset from the model with D = 20
dimensions, N = 1024 data points, and a true model parameter value µtrue that was itself randomly

1This is because the optimum importance sampling proposal for calculating expectations of a particular
function is distinct to that which best approximates the posterior. See, e.g., Owen (2013) and Ruiz et al. (2016).
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Figure 2: Histograms of gradient estimates ∆M,K for the generative network and the inference
network using the IWAE (M = 1) and VAE (K = 1) objectives with different values of M and K.

generated from a unit Gaussian, i.e. µtrue ∼ N (µtrue; 0, I). We then considered the gradient at a
random point in the parameter space close to optimum,2 namely each dimension of each parameter
was randomly offset from its optimum value using a zero-mean Gaussian with standard deviation
0.01. We then calculated empirical estimates of the ELBO gradients for the IWAE, where M = 1 is
held fixed and we consider increasing K, and for the VAE, where K = 1 is held fixed and we consider
increasing M . In all cases we calculated 104 such estimates and used these samples to provide
empirical estimates for, amongst other things, the mean and standard deviation of the estimator, and
thereby an empirical estimate for the SNR. For the inference network, we predominantly focused on
investigating the gradients of b.

We start by examining the qualitative behavior of the different gradient estimators as K increases
as shown in Figure 2. This shows histograms of the gradient estimators for a single parameter of
the inference network (top) and generative network (bottom) for the IWAE (left) and the VAE (right).
We see that, as expected, the expectation of the gradients does not change with M : the only effect
of increasing M is to reduce the variance. The effect of increasing K is quite different. We first
see in Figure 2a that as K increases, both the magnitude and the standard deviation of the estimator
decrease for the inference network, with the former decreasing faster. This matches the qualitative
behavior of our theoretical result, with the SNR ratio diminishing as K increases. In particular, the
probability of the gradient being positive or negative becomes roughly even for the larger values of
K, meaning the optimizer is equally likely to increase as decrease the inference network parameters
at the next iteration. By contrast, for the generative network, the IWAE converges towards a non-zero
gradient, such that, even though the SNR initially decreases with K, it then rises again, with a very
clear gradient signal for K = 1000.

To provide a more rigorous analysis, we next directly examine the convergence of the SNR. Figure 3
shows the convergence of the estimators with increasing M and K. The observed rates for the
inference network (Figure 3a) correspond remarkably exactly to our theoretical results, with the
suggested rates observed all the way back to K = M = 1. Thus, as expected, we see that as M
increases, so does SNRM,K(b), but as K increases, SNRM,K(b) reduces. In Figure 3b, we see that
the theoretical convergence for SNRM,K(µ) is again observed exactly for variations in M , but a more

2We consider the behavior of for points far away from the optimum in Appendix C, for which the variance
of the weights is substantially higher.
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Figure 3: Convergence of signal-to-noise ratios of gradient estimates with total budgetMK. Different
lines correspond to different dimensions of the parameter vectors. Shown in blue is the convergence
of the IWAE where we keep M = 1 fixed and increase K. Shown in red is the convergence of the
VAE where K = 1 is fixed and we increase M . The black and green dashed lines show the expected
convergence rates from our theoretical results, representing gradients of 1/2 and −1/2 respectively.

unusual behavior is seen for variations in K where the SNR initially decreases before starting to
increase again for large enoughK, eventually exhibiting behavior consistent with the theoretical result
for large enough K. The driving factor for this appears to be that, at least for this model, SNRM,∞(µ)
typically has a smaller magnitude (and often opposite sign) to SNRM,1(µ) (see Figure 2c). If we think
of the estimators for all values of K as biased estimates for SNRM,∞(µ), we see from our theoretical
results that this bias decreases faster than the standard deviation. Consequently, if reducing this bias
causes the magnitude of the expected gradient to diminish, this can mean that increasing K initially
causes the SNR to reduce.

Figure 4: Root mean squared error in µ gradient
estimate to∇µ logZ

Note that this does not mean that the estimates
are getting worse for the generative network.
As we increase K our bound is getting tighter
and our estimates closer to the true gradient
for the target that we actually want to optimize,
i.e. ∇µ logZ. It is thus perhaps better to mea-
sure the quality of the gradient estimates for
the generative network by looking at the root
mean squared error (RMSE) to ∇µ logZ, i.e.√
E [‖∆M,K −∇µ logZ‖22]. The convergence

of this RMSE is shown in Figure 4 where the
solid lines are the RMSE estimates using 104

runs and the shaded regions show the interquar-
tile range of the individual estimates. We see that increasing M in the VAE reduces the variance of the
estimates but has negligible effect on the RMSE due to the fixed bias. On the other hand, we see that
increasing K leads to a monotonic improvement, initially improving at a rate O(1/K) (because the
bias is the dominating term in this region), before settling to the standard Monte Carlo convergence
rate of O(1/

√
K) (shown by the dashed lines).

It is also the case that increasing K could be beneficial for the inference network even if it reduces
the SNR by improving the direction of the expected gradient. Because each of the individual gradients
tend to zero, there is no trivial equivalent test to Figure 4. However, we will return to consider a
comparable metric in Figure 6, where we will see that the SNR seems to be the dominant effect for
the inference network.

As a reassurance that our chosen definition of the SNR is appropriate for the problem at hand and to
examine the effect of multiple dimensions explicitly, we now also consider an alternative definition of
the SNR that is similar (though distinct) to that used in Roberts and Tedrake (2009). We refer to this as
the “directional” SNR (DSNR). At a high-level, we define the DSNR by splitting each gradient estimate
into two component vectors, one parallel to the true gradient and one perpendicular, then taking the
expectation of ratio of their magnitudes. More precisely, we define u = E [∆M,K ] /‖E [∆M,K ]‖2 as
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(a) Convergence of DSNR for inference network (b) Convergence of DSNR for generative network

Figure 5: Convergence of directional signal-to-noise ratio of gradients estimates with total budget
MK. The solid lines show the estimates DSNR and the shaded regions the interquartile range of in
the individual ratios. Also shown for reference is the DSNR for a randomly generated vector where
each component is drawn from a unit Gaussian.

(a) Convergence of DSNR for inference network (b) Convergence of DSNR for generative network

Figure 6: Convergence of directional signal-to-noise ratio of gradient estimates where the true
gradient is taken as E [∆1,1000]. Figure conventions as per Figure 5.

being the true normalized gradient direction and then the DSNR as

DSNRM,K = E
[ ‖∆‖‖2
‖∆⊥‖2

]
where ∆‖ =

(
∆T
M,Ku

)
u and ∆⊥ = ∆M,K −∆‖. (13)

The DSNR thus provides a measure of the expected proportion of the gradient that will point is the
true direction. For perfect estimates of the gradients, then DSNR →∞, but unlike the SNR, arbitrarily
bad estimates do not have DSNR = 0 because even random vectors will have a component of their
gradient in the true direction.

The convergence of the DSNR is shown in Figure 5, for which the true normalized gradient u has been
estimated empirically, noting that this varies with K. We see a similar qualitative behavior to the
SNR, with the gradients of IWAE for the inference network degrading to having the same directional
accuracy as drawing a random vector. Interestingly, the DSNR seems to be following the same
asymptotic convergence behavior as SNR for the generative network and for the inference network in
M (as shown by the dashed lines), even though we have no theoretical result to suggest this should
occur.

As our theoretical results suggest that the direction of the true gradients correspond to targeting an
improved objective as K increases, we now examine whether this or the changes in the SNR is the
dominant effect. To this end, we repeat our calculations for the DSNR but take u as the true direction
of the gradient for K = 1000. This provides a measure of how varying M and K affects the quality
of the gradient directions as biased estimators for E [∆1,1000] /‖E [∆1,1000]‖2. As shown in Figure 6,
increasing K is still detrimental for the inference network by this metric, even though it brings the
expected gradient estimate closer to the true gradient. By contrast, increasingK is now monotonically
beneficial for the generative network. Increasing M with K = 1 leads to initial improvements for
the inference network before plateauing due to the bias of the estimator. For the generative network,
increasing M has little impact, with the bias being the dominant factor throughout. Though this
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Figure 7: Convergence of optimization for different values of K and M . (Top, left) ELBOIS during
training (note this represents a different metric for different K). (Top, right) L2 distance of the
generative network parameters from the true maximizer. (Bottom) L2 distance of the inference
network parameters from the true maximizer. Plots show means over 3 repeats with ±1 standard
deviation. Optimization is performed using the Adam algorithm with all parameters initialized by
sampling from the uniform distribution on [1.5, 2.5].

metric is not an absolute measure of performance of the SGA scheme, e.g. because high bias may be
more detrimental than high variance, it is nonetheless a powerful result in suggesting that increasing
K can be detrimental to learning the inference network.

We finish our experiments by assessing the effect of the outlined changes in the quality of the
gradient estimates on the final optimization problem. Figure 7 shows the convergence of running
Adam (Kingma and Ba, 2014) to optimize µ, A, and b. This suggests that the effects observed
predominantly transfer to the overall optimization problem. Interestingly, setting K = 1 and
M = 1000 gave the best performance on learning not only the inference network parameters, but
also the generative network parameters.

5 Conclusions

We have provided theoretical and empirical evidence that algorithmic approaches of increasing the
tightness of the ELBO independently to the expressiveness of the inference network can be detrimental
to learning. Namely, we have shown for the case of IWAE that the signal-to-noise ratio, namely the
magnitude of expected value divided by the standard deviation, of the inference network gradients
estimates decreases as we increase the number of importance samples K. However, we also showed
that increasing K can provide a better target for the inference network if gradients can be calculated
exactly, suggesting that there is trade-off involved in setting K. Experiments on a simple latent
variable model support our findings. Our results qualify recent developments with regards to learning
inference networks and instigate further investigations regarding desired properties of variational
objective functions.

A natural conclusion from our results is that it may be beneficial to use different objectives for
learning the generative and inference networks. For example, one might look to use a tighter bound
for the generative network than the inference network. Naturally, doing this might introduce its own
complications, but it forms a tantalizing possible line of inquiry for future work nonetheless.

8



Acknowledgments

TR and YWT are supported in part by the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007–2013) / ERC grant agreement no. 617071. TAL is
supported by a Google studentship, project code DF6700. MI is supported by the UK EPSRC CDT
in Autonomous Intelligent Machines and Systems. CJM is funded by a DeepMind Scholarship.
FW is supported under DARPA PPAML through the U.S. AFRL under Cooperative Agreement
FA8750-14-2-0006, Sub Award number 61160290-111668.

References

R. Bamler, C. Zhang, M. Opper, and S. Mandt. Perturbative black box variational inference. arXiv
preprint arXiv:1709.07433, 2017.

Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. In ICLR, 2016.
C. Cremer, Q. Morris, and D. Duvenaud. Reinterpreting importance-weighted autoencoders. arXiv

preprint arXiv:1704.02916, 2017.
G. Fort, E. Gobet, and E. Moulines. Mcmc design-based non-parametric regression for rare event.

application to nested risk computations. Monte Carlo Methods and Applications, 23(1):21–42,
2017.

T. C. Hesterberg. Advances in importance sampling. PhD thesis, Stanford University, 1988.
D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
D. P. Kingma, T. Salimans, and M. Welling. Improving variational inference with inverse autoregres-

sive flow. arXiv preprint arXiv:1606.04934, 2016.
T. A. Le, M. Igl, T. Jin, T. Rainforth, and F. Wood. Auto-encoding sequential Monte Carlo. arXiv

preprint arXiv:1705.10306, 2017.
Y. Li and R. E. Turner. Rényi divergence variational inference. In Advances in Neural Information

Processing Systems, pages 1073–1081, 2016.
L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative models. arXiv

preprint arXiv:1602.05473, 2016.
C. J. Maddison, D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet, and Y. W. Teh.

Filtering variational objectives. arXiv preprint arXiv:1705.09279, 2017.
C. A. Naesseth, S. W. Linderman, R. Ranganath, and D. M. Blei. Variational sequential Monte Carlo.

arXiv preprint arXiv:1705.11140, 2017.
A. B. Owen. Monte Carlo theory, methods and examples. 2013.
T. Rainforth, R. Cornish, H. Yang, A. Warrington, and F. Wood. On the opportunities and pitfalls of

nesting Monte Carlo estimators. arXiv preprint arXiv:1709.06181, 2017.
R. Ranganath, D. Tran, and D. Blei. Hierarchical variational models. In International Conference on

Machine Learning, pages 324–333, 2016.
D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International

Conference on Machine Learning, pages 1530–1538, 2015.
D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference

in deep generative models. In ICML, 2014.
J. W. Roberts and R. Tedrake. Signal-to-noise ratio analysis of policy gradient algorithms. In

Advances in Neural Information Processing Systems, pages 1361–1368, 2009.
F. J. Ruiz, M. K. Titsias, and D. M. Blei. Overdispersed black-box variational inference. arXiv

preprint arXiv:1603.01140, 2016.
T. Salimans, D. Kingma, and M. Welling. Markov chain Monte Carlo and variational inference:

Bridging the gap. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pages 1218–1226, 2015.

D. Tran, R. Ranganath, and D. M. Blei. The variational Gaussian process. arXiv preprint
arXiv:1511.06499, 2015.

R. E. Turner and M. Sahani. Two problems with variational expectation maximisation for time-series
models. Bayesian Time series models, pages 115–138, 2011.

9



A Proof of SNR Convergence Rates

Theorem 1. Assume that when M = K = 1, the expected gradients; the variances of the gradients;
and the first four moments of w1,1, ∇θw1,1, and ∇φw1,1 are all finite, with the variances also being
non-zero. Then the signal-to-noise ratios of the gradient estimates converge at the following rates

SNRM,K(θ) =
√
M

∣∣∣∣∣∣∣∣
√
K ∇θZ − 1

2Z
√
K
∇θ
(

Var[w1,1]
Z2

)
+O

(
1

K3/2

)√
E
[
w2

1,1 (∇θ logw1,1 −∇θ logZ)
2
]

+O
(

1
K

)
∣∣∣∣∣∣∣∣ = O

(√
MK

)
, (6)

SNRM,K(φ) =
√
M

∣∣∣∣∣∣ ∇φVar [w1,1] +O
(

1
K

)
2Z
√
K σ [∇φw1,1] +O

(
1√
K

)
∣∣∣∣∣∣ = O

(√
M

K

)
(7)

where Z := pθ(x) is the true marginal likelihood.

Proof. We start by considering the variance of the estimators. We will first exploit the fact that each
Ẑm,K is independent and identically distributed and then apply Taylor’s theorem3 to log Ẑm,K about
Z, using R1(·) to indicate the remainder term, as follows.

M · Var [∆M,K ] = Var [∆1,K ] = Var

[
∇θ,φ

(
logZ +

Ẑ1,K − Z
Z

+R1

(
Ẑ1,K

))]

=Var

[
∇θ,φ

(
Ẑ1,K − Z

Z
+R1

(
Ẑ1,K

))]

=E

(∇θ,φ( Ẑ1,K − Z
Z

+R1

(
Ẑ1,K

)))2
−(E[∇θ,φ( Ẑ1,K − Z

Z
+R1

(
Ẑ1,K

))])2

=E

( 1

K

K∑
k=1

Z∇θ,φw1,k − w1,k∇θ,φZ
Z2

+∇θ,φR1

(
Ẑ1,K

))2


−

∇θ,φ
�
��

�
��
�*0

E

[
Ẑ1,K − Z

Z

]
+ E

[
∇θ,φR1

(
Ẑ1,K

)]
2

=
1

KZ4
E
[
(Z∇θ,φw1,1 − w1,1∇θ,φZ)

2
]

+ Var
[
∇θ,φR1

(
Ẑ1,K

)]
+ 2E

[(
∇θ,φR1

(
Ẑ1,K

))( 1

K

K∑
k=1

Z∇θ,φw1,k − w1,k∇θ,φZ
Z2

)]
Now we have by the mean-value form of the remainder that for some Z̃ between Z and Ẑ1,K

R1

(
Ẑ1,K

)
= −

(
Ẑ1,K − Z

)2
2Z̃2

and therefore

∇θ,φR1

(
Ẑ1,K

)
= −

Z̃
(
Ẑ1,K − Z

)
∇θ,φ

(
Ẑ1,K − Z

)
−
(
Ẑ1,K − Z

)2
∇θ,φZ̃

Z̃3
.

It follows that the ∇θ,φR1

(
Ẑ1,K

)
terms are dominated as each of

(
Ẑ1,K − Z

)
∇θ,φ

(
Ẑ1,K − Z

)
and

(
Ẑ1,K − Z

)2
vary with the square of the estimator error, whereas other comparable terms vary

3This approach follows similar lines to the derivation of nested Monte Carlo convergence bounds in Rainforth
et al. (2017) and Fort et al. (2017), and the derivation of the mean squared error for self-normalized importance
sampling, see e.g. Hesterberg (1988).
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only with the unsquared difference. The assumptions on moments of the weights and their derivatives
further guarantee that these terms are finite. More precisely, we have Z̃ = Z + α

(
Ẑ1,K − Z

)
for

some 0 < α < 1 where ∇θ,φα must be bounded with probability 1 as K → ∞ to maintain our

assumptions. It follows that∇θ,φR1

(
Ẑ1,K

)
= O

((
Ẑ1,K − Z

)2)
and thus that

Var [∆M,K ] =
1

MKZ4
E
[
(Z∇θ,φw1,1 − w1,1∇θ,φZ)

2
]

+
1

M
O

(
1

K2

)
(14)

using the fact that the third and fourth order moments of a Monte Carlo estimator both decrease at a
rate O(1/K2).

Considering now the expected gradient estimate and again using a Taylor’s theorem, this time to a
higher number of terms, we have
E [∆M,K ] = E [∆1,K ] = E [∆1,K −∇θ,φ logZ] +∇θ,φ logZ

= ∇θ,φE

logZ +
Ẑ1,K − Z

Z
−

(
Ẑ1,K − Z

)2
2Z2

+R2

(
Ẑ1,K

)
− logZ

+∇θ,φ logZ

= −1

2
∇θ,φE

( Ẑ1,K − Z
Z

)2
+∇θ,φE

[
R2

(
Ẑ1,K

)]
+∇θ,φ logZ

= −1

2
∇θ,φ

Var
[
Ẑ1,K

]
Z2

+∇θ,φE
[
R2

(
Ẑ1,K

)]
+∇θ,φ logZ

= − 1

2K
∇θ,φ

(
Var [w1,1]

Z2

)
+∇θ,φE

[
R2

(
Ẑ1,K

)]
+∇θ,φ logZ. (15)

Using a similar process as in variance case, it is now straightforward to show that
∇θ,φE

[
R2

(
Ẑ1,K

)]
= O(1/K2), which is thus similarly dominated (also giving us (9)).

Finally, by combing (14) and (15) and noting that
√

A
K + B

K2 = A√
K

+ B
2AK3/2 + O

(
1

K(5/2)

)
we

have

SNRM,K(θ) =

∣∣∣∣∣∣∣∣
∇θ,φ logZ − 1

2K∇θ,φ
(

Var[w1,1]
Z2

)
+O

(
1
K2

)√
1

MKZ4E
[
(Z∇θ,φw1,1 − w1,1∇θ,φZ)

2
]

+ 1
MO

(
1
K2

)
∣∣∣∣∣∣∣∣ (16)

=
√
M

∣∣∣∣∣∣∣∣
Z2
√
K
(
∇θ logZ − 1

2K∇θ
(

Var[w1,1]
Z2

))
+O

(
1

K3/2

)√
E
[
(Z∇θw1,1 − w1,1∇θZ)

2
]

+O
(

1
K

)
∣∣∣∣∣∣∣∣ (17)

=
√
M

∣∣∣∣∣∣∣∣
√
K ∇θZ − 1

2Z
√
K
∇θ
(

Var[w1,1]
Z2

)
+O

(
1

K3/2

)√
E
[
w2

1,1 (∇θ logw1,1 −∇θ logZ)
2
]

+O
(

1
K

)
∣∣∣∣∣∣∣∣ = O

(√
MK

)
. (18)

For φ, then because ∇φZ = 0, we instead have

SNRM,K(φ) =
√
M

∣∣∣∣∣∣ ∇φVar [w1,1] +O
(

1
K

)
2Z
√
K σ [∇φw1,1] +O

(
1√
K

)
∣∣∣∣∣∣ = O

(√
M

K

)
(19)

and we are done.

11



B Derivation of Optimal Parameters for Gaussian Experiment
To derive the optimal parameters for the Gaussian experiment we first note that

J (θ, φ) =
1

N
log

N∏
n=1

pθ(x
(n))− 1

N

N∑
n=1

KL
(
Qφ(z1:K |x(n))

∣∣∣∣∣∣Pθ(z1:K |x(n))) where

Pθ(z1:K |x(n)) =
1

K

K∑
k=1

qφ(z1|x(n)) . . . qφ(zk−1|x(n))pθ(zk|x(n))qφ(zk+1|x(n)) . . . qφ(zK |x(n)),

Qφ(z1:K |x(n)) is as per (2) and the form of the Kullback-Leibler (KL) is taken from Le et al. (2017).
Next, we note that φ only controls the mean of the proposal so, while it is not possible to drive the
KL to zero, it will be minimized for any particular θ when the means of qφ(z|x(n)) and pθ(z|x(n))
are the same. Furthermore, the corresponding minimum possible value of the KL is independent of θ
and so we can calculate the optimum pair (θ∗, φ∗) by first optimizing for θ and then choosing the
matching φ. The optimal θ maximizes log

∏N
n=1 pθ(x

(n)), giving θ∗ := µ∗ = 1
N

∑N
n=1 x

(n). As
we straightforwardly have pθ(z|x(n)) = N (z;

(
x(n) + µ

)
/2, I/2), the KL is then minimized when

A = I/2 and b = µ/2, giving φ∗ := (A∗, b∗), where A∗ = I/2 and b∗ = µ∗/2.

C Experimental Results for High Variance Regime
We now present empirical results for a case where our weights are higher variance. Instead of
choosing a point close to the optimum by offsetting parameters with a standard deviation of 0.01,
we instead offset using a standard deviation of 0.5. We further increased the proposal covariance to
I to make it more diffuse. This is now a scenario where the model is far from its optimum and the
proposal is a very poor match for the model, giving very high variance weights.

We see that the behavior is the same for variation in M , but somewhat distinct for variation in K.
In particular, the SNR and DSNR only decrease slowly with K for the inference network, while
increasing K no longer has much benefit for the SNR of the inference network. It is clear that, for this
setup, the problem is very far from the asymptotic regime in K such that our theoretical results no
longer directly apply. Nonetheless, the high-level effect observed is still that the SNR of the inference
network deteriorates, albeit slowly, as K increases.
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Figure 8: Histograms of gradient estimates as per Figure 2.
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Figure 9: Convergence of signal-to-noise ratios of gradient estimates as per Figure 3.

(a) Convergence of DSNR for inference network (b) Convergence of DSNR for generative network

Figure 10: Convergence of directional signal-to-noise ratio of gradients estimates as per Figure 5.

(a) Convergence of DSNR for inference network (b) Convergence of DSNR for generative network

Figure 11: Convergence of directional signal-to-noise ratio of gradient estimates where the true
gradient is taken as E [∆1,1000] as per Figure 11.
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