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1 Measures and integration

Let us begin with a few complementary results in Lebesgue’s theory of measures and inte-
grations. These notes should be read along with my “Part A Integration” lecture notes if
you haven’t taken the Lebesgue Integration course yet. The latter provides the background
material which I assume you already know.

The conventions about the extended real line [−∞,∞] will be applied in these notes,
where two symbols −∞ and ∞ are added to R, so that [−∞,∞] = {−∞} ∪ R ∪ {∞}. For
every a ∈ R, −∞ < a < ∞,

a+∞ = ∞+ a = ∞, a−∞ = −∞+ a = −∞.

a

−∞ =
a

∞ = 0,

but ∞
∞
, a

0
, ∞−∞, ∞ + (−∞) and (−∞) +∞ are not defined, while 0 · ∞ = −∞ · 0 = 0,

−∞+ (−∞) = −∞ and ∞+∞ = ∞.
Let us generalize the notions of measures and outer measures introduced in Part A

Integration with modification, for our convenience for this course.

1. Measures. Let Ω be a (sample) space, and R be a collection of some subsets of Ω.
Suppose R contains an empty set denoted by ∅. A function µ : R → [0,∞] is called a
measure on R if

1.1) µ(∅) = 0,

1.2) µ(A) ≤ µ(B) for A,B ∈ R such thst A ⊆ B, and

1.3) µ is countably additive:

µ

(

∞
⋃

i=1

Ai

)

=
∞
∑

i=1

µ (Ai)

for any Ai ∈ R (i = 1, 2, · · · ) which are disjoint, such that
⋃∞

i=1 Ai ∈ R.

2. Outer measures. If the condition of countable additivity 1.3) is replaced by countable
sub-additivity, then we obtain the definition of outer measures. That is, µ is an outer measure
on R, if 1) and 2) hold, and µ is a countably sub-additive:

µ (A) ≤
∞
∑

i=1

µ (Ai)

for any Ai, A ∈ R (i = 1, 2, · · · ) such that A ⊂ ∪∞
i=1Ai.

3. Finite measures and σ-finite measures. A measure µ on R is finite if µ(E) < ∞ for
every E ∈ R. µ is called σ-finite on R if there is a sequence of subsets Ei ∈ R such that
⋃∞

i=1 Ei = Ω and µ(Ei) < ∞ for every i = 1, 2, · · · . If µ(Ω) = 1, then µ is called a probability
measure on R.

4. Ring, algebra, σ-algebras and measurable spaces. We haven’t imposed any algebraic
structures yet on R. Several notions may be introduced via set-theoretic operations: ∪, ∩
and complementary operation \. A collection R of subsets of Ω is called a ring over Ω if
E1 ∪E2 ∈ R and E1 \E2 ∈ R for any E1, E2 ∈ R. A ring R is an algebra if the total space
Ω ∈ R. An algebra F over Ω is called a σ-algebra (or called a σ-field) if

⋃∞
i=1 Ei ∈ F for

any Ei ∈ F . If F is a σ-algebra over Ω, then (Ω,F) is called a measurable space.
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If A is a non-empty collection of some subsets of Ω, then there is a unique σ-algebra over
Ω, denoted by σ{A}, which possesses the following properties: (1) A ⊆ σ{A}, and (2) if F
is a σ-algebra over Ω containing A, then σ{A} ⊆ F . In fact

σ{A} =
⋂

{F : F is a σ-algebra containing A} .

σ{A} is the smallest σ-algebra containing A, called the σ-algebra generated by A.

5. Measure spaces and probability spaces. If (Ω,F) is a measurable space and µ is a
measure on F , then (Ω,F , µ) is called a measure space. If µ(Ω) = 1 then (Ω,F , µ) is called
a probability space. In this case Ω is called a sample space (of fundamental events), an
element A in the σ-algebra F is called an event, and µ(A) is called the probability that the
event A occurs. A probability measure µ is usually denoted by a blackboard letter P.

6. Measurable functions. B(Rn) denotes the Borel σ-algebra on Rn, which is the smallest
σ-algebra containing open subsets. A function f : Ω → [−∞,∞] is measurable with respect
to a σ-field F , or simply called F -measurable, if

f−1(G) = {f ∈ G} ≡ {ω ∈ Ω : f(ω) ∈ G}

belongs to F for every G ∈ B(R), and both f−1(∞) and f−1(−∞) belong to F as well.

7. Structure of measurable functions. A simple (measurable) function ϕ on (Ω,F) is
a (real valued) function on Ω which can be written as ϕ =

∑n

k=1 ck1Ek
for some n, some

constants ck and some Ek ∈ F . A function f : Ω → [0,∞] is F -measurable, if and only if
there is an increasing sequence of non-negative, F -measurable simple functions ϕn such that
ϕn ↑ f everywhere on Ω.

8. Definition of Lebesgue’s integrals. Let (Ω,F , µ) be a measure space. The Lebesgue
theory of integration, developed in Part A Integration, may be applied to the measure µ.
Let us recall quickly the procedure of defining Lebesgue’s integrals. First define integrals
for simple functiona, namely, if ϕ =

∑m

j=1 cj1Ej
is a non-negative (F -measurable) simple

function on Ω, where ci ≥ 0 and Ei ∈ F for i = 1, · · · ,m, then
´

E
ϕdµ =

∑m

i=1 ciµ(Ei). If
f : Ω → [0,∞] is a non-negative F -measurable function, then

ˆ

Ω

fdµ = sup

{

ˆ

E

ϕdµ : ϕ ≤ f where ϕ =
m
∑

i=1

ci1Ei
and ci ≥ 0, Ei ∈ F

}

.

9. Integrable functions. If f is non-negative measurable and if
´

Ω
fdµ < ∞, then we say

f is (Lebesgue) integrable on Ω with respect to the measure µ, denoted by f ∈ L1(Ω,F , µ),
f ∈ L1(Ω, µ), L1(Ω) or simply by f ∈ L1 if the measure space in question is clear. If
f : Ω → [−∞,∞] is F -measurable, so are f+ = f ∨ 0, f− = (−f) ∨ 0 and |f | = f+ − f−.
If both f+ and f− are integrable, then we say f is integrable, denoted by f ∈ L1(Ω,F , µ)
etc., and define its (Lebesgue) integral by

ˆ

Ω

fdµ =

ˆ

Ω

f+dµ−
ˆ

Ω

f−dµ.

If f : Ω → C is a complex, F -measurable function: f = u +
√
−1v, then f is integrable

if both real part u and imaginary part v are integrable against the measure µ, and in this
case, the Lebesgue integral of f is defined by

ˆ

Ω

fdµ =

ˆ

Ω

udµ+
√
−1

ˆ

Ω

vdµ.
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L1(Ω,F , µ) denotes the vector space of all F -measuable (real or complex valued) integrable
function on (Ω,F , µ).

The convergence theorems are applicable to a measure space (Ω,F , µ), and they may be
stated as the following.

10. Monotone Convergence Theorem (MCT, due to Lebesgue and Levi). Suppose fn :
Ω → [0,∞] are non-negative, measurable, and suppose fn+1 ≥ fn almost everywhere on Ω
for all n, then

ˆ

Ω

lim
n→∞

fndµ = lim
n→∞

ˆ

Ω

fndµ = sup
n

ˆ

Ω

fndµ.

In particular, if
{´

Ω
fndµ

}

is bounded above, then limn→∞ fn is integrable.

11. Series version of MCT (due to Lebesgue and Levi). This is very useful and is handy
in applications. If an are non-negative and measurable, then

ˆ

Ω

∑

n

andµ =
∑

n

ˆ

Ω

andµ.

12. Fatou’s Lemma. Suppose fn : Ω → [0,∞] are non-negative and measurable, then

ˆ

Ω

lim inf
n→∞

fndµ ≤ lim inf
n→∞

ˆ

Ω

fndµ.

13. Lebesgue’s Dominated Convergence Theorem (DCT). Suppose fn : Ω → [−∞,∞] (or
fn : Ω → C) are measurable, fn → f almost everywhere, and suppose there is an integrable
(control) function g such that |fn| ≤ g almost everywhere for all n, then fn are integrable
and

lim
n→∞

ˆ

Ω

fndµ =

ˆ

Ω

fdµ.

14. Reverse Fatou’s Lemma. Suppose fn and g are integrable, and fn ≤ g almost surely
for n = 1, 2, · · · . Then g−fnare non-negative, and lim inf(g−fn) = g− lim sup fn. Applying
Fatou’s lemma to g − fn we obtain

ˆ

Ω

[

g − lim sup
n→∞

fn

]

dµ ≤ lim inf
n→∞

[
ˆ

Ω

g −
ˆ

Ω

fndµ

]

=

ˆ

Ω

gdµ− lim sup
n→∞

ˆ

Ω

fndµ

which in particular yields that

ˆ

Ω

gdµ− lim sup
n→∞

ˆ

Ω

fndµ ≥ 0

so that lim supn→∞

´

Ω
fndµ ≤

´

Ω
gdµ. If lim supn→∞

´

Ω
fndµ > −∞, then

ˆ

Ω

gdµ− lim sup
n→∞

ˆ

Ω

fndµ < ∞

so that g − lim supn→∞ fn is integrable, and lim supn→∞

´

Ω
fndµ ≤

´

Ω
lim supn→∞ fndµ. Let

us state what we have proved as the following.
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Theorem 1.1 (Reverse Fatou’s Lemma) Suppose fn and g are integrable, and fn ≤ g
almost surely for n = 1, 2, · · · , and suppose lim supn→∞

´

Ω
fndµ > −∞, then lim supn→∞ fn

is integrable and
ˆ

Ω

lim sup
n→∞

fndµ ≥ lim sup
n→∞

ˆ

Ω

fndµ.

15. Notations. If f ∈ L1(Ω,F , µ) or if f is non-negative and measurable, then we also
use Eµ(f), µ(f) or E(f) to denote Lebesgue integral

´

Ω
fdµ. If A ∈ F , then (A,A∩F , µ) is

a measure space too. In this case
´

A
fdµ concides with

´

Ω
f1Adµ, which will be denoted by

Eµ [f : A] or by E [f : A] if the measure in question is clear.

16. The Lpspace for p ∈ [1,∞] can be defined over a measure space. When dealing with
Lp-spaces, we identify an F -measurable function f on (Ω,F , µ) with its equivalent class of
all F -measurable functions which are equal to f almost surely on Ω. Then Lp(Ω,F , µ) is the
vector space of all F -measurable functions f such that |f |p is µ-integrable, equipped with
the Lp-norm: if p ∈ [1,∞), then

‖f‖p =
(
ˆ

Ω

|f |pdµ
)

1
p

= (E|f |p) 1
p .

If p = ∞, then

‖f‖∞ = inf {K : |f | ≤ K on Ω \N for some N ∈ F such that µ(N) = 0}

which is called the µ-essential supremum of |f |.
17. Convergence in Lp-spaces. Lp(Ω,F , µ) are Banach spaces. f → ||f ||p is a norm

on Lp(Ω,F , µ), and Lp(Ω,F , µ) is a complete metric space under the induced distance
(f, g) → ||f − g||p. We say a sequence fn converges to f in Lp(Ω,F , µ) if fn and f belong
to Lp(Ω,F , µ) and ||fn − f ||p → 0, which is equivalent to that

´

Ω
|fn − f |pdµ → 0.

Let us give a short discussion about the convergence in L1-space, and we will come back
to this topic by introducing the notion of uniform integrability. The following simple fact
about L1-convergence, it is quite useful though, and its proof is a good exercise about DCT.

Theorem 1.2 (Scheffe’s Lemma) Suppose fn and f are integrable, and fn → f almost
surely. Then fn → f in L1(Ω,F , µ) if and only if Eµ [|fn|] → Eµ [|f |].

Proof. “Only if” part is easy. In fact, if fn → f in L1, then, by the triangle inequality,

||fn| − |f || ≤ |fn − f |

so that

0 ≤
∣

∣

∣

∣

ˆ

Ω

|fn|dµ−
ˆ

Ω

|f |dµ
∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

Ω

(|fn| − |f |)
∣

∣

∣

∣

≤
ˆ

Ω

|fn − f |dµ → 0

which implies that
´

Ω
|fn|dµ →

´

Ω
|f |dµ.

Proof of “If” part. Assume that fn → f almost surely and
´

Ω
|fn|dµ →

´

Ω
|f |dµ. We

want to show that fn → f in L1. To this end, we decompose the sample space Ω into two
components for each n: An = {fnf ≥ 0}, Bn = {fnf < 0}. Then

|fn − f | = ||fn| − |f || on An
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and, by the triangle inequality,

|fn − f | = ||fn|+ |f || ≤ ||fn| − |f ||+ 2|f | on Bn.

Hence
ˆ

Ω

|fn − f |dµ =

ˆ

An

|fn − f | dµ+

ˆ

Bn

|fn − f | dµ

≤
ˆ

An

||fn| − |f || dµ+

ˆ

Bn

[||fn| − |f ||+ 2|f |] dµ

=

ˆ

Ω

||fn| − |f || dµ+ 2

ˆ

Bn

|f |dµ

=

ˆ

Ω

||fn| − |f || dµ+ 2

ˆ

Ω

1Bn
|f |dµ.

The first term on the right-hand side of the previous inequality many be rewrriten as the
following

ˆ

Ω

||fn| − |f || dµ =

ˆ

Ω

(|fn| − |f |)+ dµ+

ˆ

Ω

(|fn| − |f |)− dµ

=

ˆ

Ω

(|fn| − |f |) dµ+ 2

ˆ

Ω

(|fn| − |f |)− dµ

where we have used the identity

|g| = g+ + g− = g+ − g− + 2g− = g + 2g−.

Putting together we obtain the following estimate for the L1-norm of fn − f :
ˆ

Ω

|fn − f |dµ ≤
ˆ

Ω

||fn| − |f || dµ+ 2

ˆ

Ω

1Bn
|f |dµ

=

ˆ

Ω

(|fn| − |f |) dµ+ 2

ˆ

Ω

(|fn| − |f |)− dµ+ 2

ˆ

Ω

1Bn
|f |dµ. (1.1)

We next want to let n → ∞ in the inequality above. The first term on the right-hand side
tends to zero as n → ∞ by assumption. In fact

ˆ

Ω

(|fn| − |f |) dµ =

ˆ

Ω

|fn|dµ−
ˆ

Ω

|f |dµ → 0

as n → ∞. For the second term, we observe that

(|fn| − |f |)− = 0 on {|fn| ≥ |f |}

and
(|fn| − |f |)− = |fn| − |f | ≤ |fn| ≤ |f | on {|fn| < |f |}

so that
(|fn| − |f |)− ≤ |f |

for all n, |f | is integrable, and (|fn| − |f |)− → 0 almost surely, thus by the Dominated
Convergence Theorem we conclude that

ˆ

Ω

(|fn| − |f |)− dµ → 0.
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To show the last term on the right-hand side of (1.1)
´

Bn
|f |dµ tends to zero, we notice that

|f |1Bn
→ 0. While it is clear that |f |1Bn

= 0 on {|f | = 0} for all n. If |f(x)| > 0, and
fn(x) → f(x), then there is N (depending on x in general) such that |fn(x)− f(x)| < 1

2
f(x)

so that fn(x)f(x) > 0 for all n > N , hence x /∈ Bn for n > N . Thus 1Bn
(x) = 0 for all n > N .

Hence |f |1Bn
(x) = 0 for all n > N . Since fn → f almost surely, we thus can conclude that

|f |1Bn
→ 0 almost everywhere as n → ∞. a |f |1Bn

is controlled by the integral function |f |,
so by DCT we have

´

Bn
|f |dµ =

´

Ω
|f |1Bn

dµ → 0. Therefore, by Sandwich lemma, it follows

from (1.1) that limn→∞

´

Ω
|fn − f |dµ = 0.

2 Carathéodory’s extension theorem

In this section we review the main tools for constructing measures.

1. π-system and montone class. Suppose C is a non-empty family of some subsets of Ω,
then C is called a π-system if C is closed under the intersection, that is, A∩B ∈ C whenever
A,B ∈ C. A collectionM of some subsets of Ω is called a monotone class (or claaed d-class)
if 1) Ω ∈ M, 2) if A,B ∈ M and A ⊆ B then B \ A ∈ M, 3) ∪∞

n=1An ∈ M whenever
An ∈ M such that An ↑.

Given a non-empty family H of some subsets of Ω, M(H) denotes the smallest monotone
class which contains H, called the monotone class generated by H. The existence and
uniqueness of M(H) are left as an exercise for the reader.

Lemma 2.1 (Dynkin’s lemma) If C is a π-system over Ω, then M(C) coincides with the
smallest σ-algebra σ(C) containing C, that is, M(C) = σ(C).

Since a σ-algebra must be a monotone class, so that M (C) ⊆ σ (C). To prove the other
inclusion that σ (C) ⊆ M(C), one only needs to verify that M (C) is a σ-algebra by using
the fact that C is a π-system. The proof is routine, see for example page 193, D. Willams:
Probability with martingales.

2. Uniqueness criterion. The following is a simple and useful uniqueness result.

Lemma 2.2 (Uniqueness lemma) Suppose µj (j = 1, 2) are two finite measures on a mea-
surable space (Ω,F), and suppose C ⊆ F is a π-system containing the sample space Ω such
that σ(C) = F . If µ1(E) = µ2(E) for every E ∈ C, then µ1 = µ2 on F .

The proof of this lemma is an example how to use the Dynkin lemma.
Proof. Let G be the collections of all E ∈ F such that µ1(E) = µ2(E). Then C ⊆ G by

assumptions. We prove that G is a monotone class. In fact, it is assumed that Ω ∈ G. Since
µ1(∅) = µ2(∅) = 0 so that ∅ ∈ G. If A,B ∈ G and A ⊆ B, then, since µi(B) < ∞, we have

µ1(B \ A) = µ1(B)− µ1(A) = µ2(B)− µ2(A) = µ2(B \ A)

which yields that B \ A ∈ G. Suppose now An ∈ G, and An ↑, then

µ1

(

∞
⋃

n=1

An

)

= lim
n→∞

µ1(An) = lim
n→∞

µ2(An) = µ2

(

∞
⋃

n=1

An

)

which implies that
⋃∞

n=1 An ∈ G. Thus G is a monotone class containing C. By Lemma 2.1,
G ⊇ M(C) = σ{C} = F , so that µ1 = µ2 on F .

There is another version of the uniqueness for σ-finite measures.
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Lemma 2.3 Let µj (j = 1, 2) be two measures on (Ω,F), and R ⊆ F be a ring such that
σ(R) = F . Suppose µ1 and µ2 are σ-finite on R: there is a sequence of subsets Gn ↑ Ω,
Gn ∈ R and µ1(Gn) = µ2(Gn) < ∞ for every n. Suppose µ1(E) = µ2(E) for every E ∈ R.
Then µ1 = µ2 on F .

Proof. Apply Lemma 2.2 to finite measures µj(· ∩ Gn) for every n to conclude that
µ1(E∩Gn) = µ2(E∩Gn) for every n and E ∈ F . Letting n ↑ ∞ to obtain that µ1(E) = µ2(E)
for every E ∈ F .

3. Measurable sets and Caratheodory’s extension theorem. The construction of measures
rely on the extension theorem of Carathéodory’s, a theorem that tells us how to select
measurable subsets for an outer measure. Let H be a σ-algebra over a sample space Ω, and
µ∗ : H → [0,∞] be an outer measure on (Ω,H), so that

3.1) µ∗(∅) = 0;

3.2) µ∗(A) ≤ µ∗(B) for any A ⊆ B, A,B ∈ H; and

3.3) µ∗ is countably sub-additive:

µ∗

(

∞
⋃

n=1

En

)

≤
∞
∑

n=1

µ∗(En)

for any sequence En ∈ H (n = 1, 2, · · · ).
A subset E ∈ H is called µ∗-measurable, if E satisfies the Carathéodory condition that

µ∗(F ) = µ∗(F ∩ E) + µ∗(F ∩ Ec) for every F ∈ H. (2.1)

The collection of all µ∗-measurable subsets is denoted byM orM(H, µ∗) (in order to indicate
the dependence on the outer measure µ∗ on (Ω,H).)

Theorem 2.4 (Caratheodory) Let (Ω,H) be a measurable space and µ∗ be an outer measure
on (Ω,H). Then the collection M(H, µ∗) of all µ∗-measurable subsets forms a σ-algebra over
Ω, and µ∗ restricted on M(H, µ∗) is a measure.

The proof of the previous theorem is exactly the same as that in Part A Integration.

Theorem 2.5 (Caratheodory’s extension theorem) Let Ω be a space and R be a σ-algebra.
If µ is a measure on the algebra R, we can define the outer measure µ∗ by

µ∗(E) = inf

{

∞
∑

j=1

µ (Ej) : where Ej ∈ R and
∞
⋃

j=1

Ej ⊇ E

}

where the inf runs over all countable cover {Ej} of E and Ej ∈ R. Then any set E ∈ R is
µ∗-measurable, and µ∗(E) = µ(E), so that µ∗ restricted on the σ-algebra of all µ∗-measurable
subsets is an extension of µ.

This is a consequence of Theorem 2.4, the only thing need to check is that every element
E of R, µ∗(E) = µ(E) (which is direct but not trivial).

4. Null sets. A subset E ∈ H is µ∗-null set if µ∗(E) = 0. If {Ei : i = 1, 2, · · · } is a
sequence of µ∗-null sets, so is

⋃∞
i=1 Ei by the countable sub-additivity. By definition, any

µ∗-null set is µ∗-measurable. Therefore µ∗ is a complete measure on (Ω,M(H, µ∗)).
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5. Completion of a measure space. If (Ω,F , µ) is a measure space, so it is extended to
an outer measure µ∗ defined by

µ∗(E) = inf

{

∞
∑

j=1

µ(Ej) : where Ej ∈ F such that
∞
⋃

n=1

Ej ⊃ E

}

and let F∗ be the σ-field of all µ∗-measurable subsets. Then (Ω,F∗, µ) is a measure space,
and F ⊆ F∗ . Let N µ denotes the collection of all µ∗-null subsets, so that N µ ⊆ F∗ too.
Hence Fµ ≡ σ {N µ,F} ⊆ F∗. Thus (Ω,Fµ, µ) is a complete measure space, called the
completion of (Ω,F , µ).

3 Lebesgue-Stieltjes measures – outline of constructon

These are the most important examples of measures used in analysis.

1. Increasing functions. Let ρ : (a, b) → (−∞,∞) be an increasing function, where
(a, b) ⊂ (−∞,∞) is an open interval. Then the left limit ρ(t−) = lims↑t ρ(s) and the right
limit ρ(t+) = limu↓t ρ(u) exist at every t ∈ (a, b), and

ρ(s) ≤ ρ(t−) ≤ ρ(t) ≤ ρ(t+) ≤ ρ(u)

for any a < s < t < u < b. ρ is called right continuous (resp. left continuous) at t ∈ (a, b)
if ρ(t) = ρ(t+) (resp. ρ(t) = ρ(t−)). For any increasing function ρ on (a, b), ρ+(t) ≡ ρ(t+)
is right continuous at every t ∈ (a, b). ρ+ is called the right continuous modification of ρ.
Similarly, ρ−(t) = ρ(t−) is left continuous at any t ∈ (a, b), ρ− is called the left continuous
modification of ρ. Therefore, an increasing function ρ is right continuous on (a, b) if ρ+
coincides with ρ by definition.

2. Constructing Lebesgue-Stieltjes measure. For every right continuous increasing func-
tion ρ on (a, b) we construct a measure mρ on a σ-algebra Mρ consisting of mρ-measurable
subsets of (a, b). The construction is divided into several steps.

2.1) Decide what we want. Let C (a, b) be the π-system of all intervals (s, t], where
a < s ≤ t < b, and we decide to assign a measure of such (s, t] to be mρ((s, t]) = ρ(t)− ρ(s).

2.2) Defining an outer measure. With mρ defined on the π-system C (a, b), we can assign
an outer measure for any subset E ⊂ (a, b), typically by

m∗
ρ(E) = inf

{

∞
∑

j=1

mρ(Cj) : where Cj ∈ C (a, b) such that
∞
⋃

j=1

Cj ⊃ E

}

where the inf runs over all possible countable covers of E through C . m∗
ρ is an outer measure

on P(a, b) which is the σ-algebra of all subsets of (a, b).

2.3) Apply Caratheodory’s theorem. By Theorem 2.4, the collection of all m∗
ρ-measurable

subsets E of (a, b) is a σ-algebra on (a, b), denoted by Mρ, and m∗
ρ : Mρ → [0,∞] is

a measure. mρ is called the Lebesgue-Stieltjes measure on (a, b) associated with a right
continuous increasing function ρ on (a, b).

The above three steps of constructing measures from outer measures apply to general
cases, not only for measures on intervals. The most important question is of course to
identify the measurable sets, i.e. to identify the σ-algebra Mρ of m∗

ρ-measurable subsets.
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2.4) Identifying measurable sets. Let R(a, b) be the ring of all subsets E ⊂ (a, b) which
are finite unions of subsets in C (a, b). The main technical step is to prove the finite additivity
of m∗

ρ restricted on the ring R(a, b). That is, if E ∈ R(a, b), so that E = ∪m
j=1Cj where

Cj = (sj, tj ], a < sj ≤ tj < b (j = 1, 2, · · · ,m) such that (sj, tj ] are disjoint, then

m∗
ρ(E) =

m
∑

j=1

(ρ(tj)− ρ(sj)) .

Therefore, it follows that the outer measure m∗
ρ restricted on the ring R(a, b) is finitely

additive.
We then can show that any set E ∈ R(a, b) ism∗

ρ-measurable, so that C (a, b) ⊂ R(a, b) ⊂
Mρ. Thus the Borel σ-algebra B(a, b) ⊂ Mρ. It is easy to verify that

B(a, b) = (a, b)
⋂

B(R) =
{

(a, b)
⋂

G : where G ∈ B(R)
}

= {G : G ⊂ (a, b) and G ∈ B(R)} .

Therefore any Borel subset of (a, b) is measurable with respect to the Lebesgue-Stieljes
measure mρ. The restrictionof the outer measure m∗

ρ on Mρ is denoted by mρ.
Thus for every right-continuous increasing function ρ on an open interval (a, b), we

have constructed a measure space ((a, b),Mρ,mρ), which is σ-finite and complete. Also
((a, b),B(a, b),mρ) is a measure space, σ-finite, which is not complete in general.

3. Notations. If ρ is an inceasing function on (a, b), then its right continuous modification
ρ+(t) = ρ(t+) is right continuous, so that the Lebesgue-Stieljes measuremρ+ is defined, which
is called the Lebesgue-Stieljes measure associated with ρ, denoted by mρ, that is, mρ = mρ+

and Mρ = Mρ+ . In particular, mρ is the unique measure on ((a, b),B(a, b)) such that

mρ((s, t]) = ρ+(t)− ρ+(s) = ρ(t+)− ρ(s+)

for any a < s < t < b. In particular

mρ({t}) = lim
n→∞

mρ

(

(t− 1

n
, t]

)

= lim
n→∞

[

ρ(t+)− ρ(

(

t− 1

n

)

+)

]

= ρ(t+)− ρ(t−)

for every t ∈ (a, b). In particular, {t} (where t ∈ (a, b)) is an mρ-null set if and only if ρ is
continuous at t.

4 Generalized measures and Radon-Nikodym’s deriva-

tive

1. Generalized measures. Let (Ω,F) be a measurable space. If µ1 and µ2 are two measures
on F , and if one of them is finite so that their difference

µ(E) = µ1(E)− µ2(E)

for E ∈ F defines a function (called a signed measure) from F to [−∞,∞], which is, though
not a positive measure, countably additive. Such “generalized measures” are interesting and
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are arisen naturally in Lebesgue’s integration. For example, if f is integrable function on a
measure space (Ω,F , µ), then

µf (E) =

ˆ

E

fdµ =

ˆ

E

f+dµ−
ˆ

E

f−dµ, for E ∈ F ,

is an example of “generalised measures”. We thertefore generalize the definition of measures
to the so-called generalized measures as the following. A function µ : F → (−∞,∞] is called
a generalized measure (which does not take value −∞) if

1) µ(Ø) = 0,
2) µ possesses the countable additivity:

µ

(

∞
⋃

i=1

Ai

)

=
∞
∑

i=1

µ(Ai)

for any Ai ∈ F which are disjoint. While of course we can define generalized measures µ
take values in [−∞,∞) instead, but it is not necessary, as in this case −µ takes values in
(−∞,∞].

2. Hahn’s decomposition for generalized measures. Clearly, any signed measure µ =
µ1 − µ2, where µi are measures on (Ω,F) and µ2(Ω) < ∞, is a generalised measure. The
converse is also true.

Theorem 4.1 (Hahn’s decomposition) If µ is a generalized measure on (Ω,F), then there
is a decomposition Ω = A+ ∪ A−, where A+, A− ∈ F such that A+ ∩ A− = Ø, and

µ(E ∩ A+) ≥ 0, µ(E ∩ A−) ≤ 0

for every E ∈ F . Moreover the positive and negative part A+ and A− are unique in the
sense that if A+

i and A−
i (where i = 1, 2) are two pairs satisfying the Hahn’s decomposition,

then
µ(E ∩ A+

1 ) = µ(E ∩ A+
2 ), and µ(E ∩ A−

1 ) = µ(E ∩ A−
2 )

for every E ∈ F .

Proof. [The proof is not examinable.] The unique sets A+ and A− (up to a “null set”)
are called the positive (resp. negative) set of the generalized measure µ. Let

λ = inf {µ(G) : where G ∈ F such that µ(E ∩G) ≤ 0 for all E ∈ F} .

Choose a sequence Gn ∈ F such that µ(Gn) → λ as n → ∞. Then the candidate for A−

should be the largest possible negative set, that is

A− =
∞
⋃

n=1

(

Gn \ ∪n−1
j=1Gj

)

.

In fact, A− is still a negative set: µ(E ∩A−) ≤ 0 for every E ∈ F , and therefore µ(A−) = λ
(which yields also that λ > −∞). We claim that the pair A+ = Ω \ A− and A− is a
decomposition satisfying that µ(E ∩ A+) ≥ 0 and µ(E ∩ A−) ≤ 0 for every E ∈ F .

We only have to show that µ(E ∩ A+) ≥ 0 for every E ∈ F , that is for any E ⊆ A+,
µ(E) ≥ 0. Let us argue by a contradiction. Suppose there is an E0 ⊆ A+ such that
µ(E0) < 0. Then, since E0 ∩ A− = Ø, so that

µ(A− ∪ E0) = µ(A−) + µ(E0) = λ+ µ(E0) < λ
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which is a contradiction to the definition of λ, and therefore A− ∪ E0 can not be a negative
set of µ, so there is a subset A1 ⊆ E0 such that µ(A1) > 0. Hence

k1 = min

{

n ∈ N : there is A1 ⊆ E0, µ(A1) ≥
1

n

}

exists, and we can find an E1 ⊆ F such that E1 ⊆ E0 and 1
k1

≤ µ(E1) <
1

k1−1
. Clearly

µ(E0 \ E1) = µ(E0)− µ(E1) < 0

so we can argue as above with E0 \ E1 in place of E0 and choose E2 ⊆ E0 \ E1 such that
µ(E2) > 0 and 1

k2
≤ µ(E2) <

1
k2−1

, where

k2 = min

{

n ∈ N : there is A1 ⊆ E0 \ E1, µ(A1) ≥
1

n

}

.

Repeating the previous procedure we may construct a sequence of En inductively, such
that En ⊆ E0 \ ∪n−1

j=1Ej [in particular En are disjoint], kn are non-decreasing, such that
1
kn

≤ µ(En) <
1

kn−1
, and

kn = min

{

n ∈ N : there is A ⊆ E0 \
n−1
⋃

i=1

Ei such that µ(A) ≥ 1

n

}

.

We claim that
∑

n
1
kn

< ∞, since, otherwise, we would have

∑

n

µ(En) ≥
∑

n

1

kn
= ∞.

Since µ(E0) < 0 and

µ(E0) =
∑

n

µ(En) + µ (E0 \ ∪∞
n=1En)

we may deduce that

µ

(

E0 \
∞
⋃

n=1

En

)

= −∞

which is a contradiction to the assumption that µ(E) > −∞ for every E ∈ F . Therefore
it must be hold that kn → ∞, so that µ(En) → 0, hence any subset of E0 \ ∪∞

n=1En has
non-positive measure, and

µ

(

E0 \
∞
⋃

n=1

En

)

= µ(E0)−
∞
∑

n=1

µ(En) < λ

which contradicts to the definition of λ.
For a different approach, read W. Rudin: Real and Complex Analysis, Third Edition,

pages 120-126.

3. Jordan’s decomposition for generalized measures. Thus, if µ is a generalized measure
over (Ω,F), and Ω = A+ ∪ A− is an Hahn decomposition with respect to µ, then µ+(E) =
µ(E ∩ A+) and µ−(E) = −µ(E ∩ A−) (where E ∈ F) define two measures on (Ω,F).
Moreover, µ− is a finite measure. By definition, µ = µ+−µ− is thus a signed measure, called
the Jordan decomposition of the generalized measure µ. We may also define |µ| = µ+ + µ−
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which is also a measure on (Ω, µ), called the total variation measure of the generalized
measure µ = µ+ − µ−.

If ρ is a function defined on (a, b), which has finite total variation, that is,

sup
D

n
∑

j=1

|ρ(tj)− ρ(tj−1)| < ∞

where the sup takes over all possible finite partitions D : a < t0 < t1 < · · · < tn < b. Then

ρTV(t) ≡ sup
Dt

n
∑

j=1

|ρ(tj)− ρ(tj−1)|

defines an increasing function, where the sup rns over all finite partions Dt : a < t0 < t1 <
· · · < tn = t, for every t ∈ (a, b). ρN(t) ≡ ρTV(t)− ρ(t) is also increasing. In particular, ρ is
a difference of two increasing functions, so that ρ has left and right limits at every t ∈ (a, b).
Moreover, if ρ is right continuous at t, then so is ρTV. Therefore if ρ is right continuous and
has finite total variation, then ρ = ρ1−ρ2 a difference of two right continuous and increasing
functions. mρ ≡ mρ1 − mρ2 is a signed measure. In this case the total variation measure
|mρ| = mρTV

.

4. Lebesgue’s integrals w.r.t. a generalized measure. The usual concepts about measures
may be applied to generalized measures via Jordan’s dcompositions. For example, we say a
generalized measure µ is σ-finite if |µ| is σ-finite, which is equivalent to say both µ+ and µ−

are σ-finite. The theory of Lebesgue’s integration may be applied to a generalized measure
µ = µ+ − µ− on (Ω,F) too. For example, an F -measurable function f : Ω → [−∞,∞] is
µ-integrable if and only if, by definition, f is integrable against the total variation measure
|µ| = µ++µ− (which is equivalent to say f is integrable with respect both measures µ+ and
µ−), and in this case

ˆ

Ω

fdµ =

ˆ

Ω

fdµ+ −
ˆ

Ω

fdµ−.

5. Absolute continuity and Radon-Nikodym’s theorem. Next we turn to an important
concept about two generalized measures: the concept of absolute continuity.

Definition 4.2 Let ν and µ be two measures on a measurable space (Ω,F), then we say ν
is absolutely continuous with respect to µ, written as ν ≪ µ, if E ∈ F and µ(E) = 0 implies
that ν(E) = 0. That is, any µ-null set is also a ν-null set.

Theorem 4.3 (Radon-Nikodym’s derivative) If µ and ν are two σ-finite measures on (Ω,F),
such that ν ≪ µ, then there is a non-negative F-measurable function ρ such that

ν(E) =

ˆ

E

ρdµ for every E ∈ F .

Moreover ρ is unique up to µ-almost everywhere. ρ is called the Radon-Nikodym derivative
of ν with respect to µ, denoted by dν

dµ
.

Proof. [The proof is not examinable.] Let us outline the proof of this important theorem
for the case where ν and µ are two finite measures : µ(Ω) < ∞ and ν(Ω) < ∞. In this case,
let L denote the collection of all non-negative measurable functions h such that

µ [h : E] =

ˆ

E

hdµ ≤ ν(E) for every E ∈ F .
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Then, L is a non-empty class. Now consider λ = suph∈L

´

Ω
hdµ. Then, clearly λ ≥ 0

and λ ≤ ν(Ω) < ∞. Choose a sequence of functions hn ∈ L such that
´

Ω
hndµ → λ.

Let ρ = supn hn. We claim that ρ is the Radon-Nikodym derivative. To this end, set

ρn = max{h1, · · · , hn} for every n. For every n, we may choose a decomposition Ω = ∪n
i=1E

(n)
i

where E
(n)
i ∈ F which are disjoint, and ρn = hi on E

(n)
i for i = 1, · · · , n. Thus, for every

E ∈ F , we have
ˆ

E

ρndµ =
n
∑

i=1

ˆ

Ei∩E

hidµ ≤
n
∑

i=1

ν(Ei ∩ E) = ν(E)

that is, ρn ∈ L . By definition, ρn ↑ ρ, so by MCT, ρ = lim ρn ∈ L1(Ω, µ), and by our
construction,

´

Ω
ρdµ = λ and ρ ∈ L , i.e.

´

E
ρdµ ≤ ν(E) for every E ∈ F . In particular,

ρ < ∞ µ-almost everywhere, hence ν-almost everywhere as ν ≪ µ. Therefore, we may
assume that ρ is finite everywhere.

We next show that ν(E) =
´

E
ρdµ for every E ∈ F . To this end consider the generalized

measure

m(E) = ν(E)−
ˆ

E

ρdµ

where E ∈ F . Since ρ ∈ L , m is a measure, and we want to show that m = 0. Suppose
there is E0 ∈ F such that m(E0) > 0, thus

ν(E0) >

ˆ

E0

ρdµ.

Hence, there must exist ε > 0, such that ν(E0) > εµ(E0). Applying Hahn’s decomposition
to the generalized measure ν− εµ, there is an positive set A+ with respect to ν− εµ, so that

ν(A+ ∩ E)− εµ(A+ ∩ E) ≥ 0

and
ν(A+)− εµ(A+) > 0.

Since ν ≪ µ, the last inequality yields that µ(A+) > 0. Now consider ϕ = ρ + ε1A+ . Then
for every E ∈ F , we have

ˆ

E

ϕdµ =

ˆ

E∩A+

(ρ+ ε1A+) dµ+

ˆ

E\A+

ρdµ

≤ (ν −m) (E ∩ A+) + εµ(E ∩ A+) + ν(E \ A+)

≤ ν(E ∩ A+) + ν(E \ A+)

= ν(E)

so that ϕ ∈ L . On the other hand
ˆ

Ω

ϕdµ =

ˆ

Ω

ρdµ+ ε

ˆ

Ω

1Adµ = λ+ εµ(A) > λ

a contradiction to the definition of λ.

6. An integral formula. The following theorem follows from a routine computation.

Theorem 4.4 Suppose µ and ν are two σ-finite measures on (Ω,F), such that ν ≪ µ. Let
f be an F-measurable function. Then f is integrable with respect to ν if and only if f dν

dµ
is

integrable with respect to µ, and
ˆ

Ω

fdν =

ˆ

Ω

f
dν

dµ
dµ.

14



7. Conditional expectations. This is perhaps the most important concept in probability
theory. Let (Ω,F , µ) be a measure space, and let f : Ω → [0,∞] be F -measurable. For
every A ∈ F , define µf (A) =

´

Ω
f1Adµ =

´

A
fdµ. Then µf is a measure defined on F .

In fact, if An is a sequence of disjoint F -measurable subsets, then f1⋃∞

n=1 An
=
∑∞

n=1 f1An
,

thus, by MCT (series version) we have

µf

(

∞
⋃

n=1

An

)

=

ˆ

Ω

f1⋃∞

n=1 An
dµ =

∞
∑

n=1

ˆ

Ω

f1An
dµ =

∞
∑

n=1

µf (An)

so µf is a measure on (Ω,F).
µf possesses an important property – if A ∈ F is a µ-null set, i.e. µ(A) = 0, then A

is also a µf -null set: µf (A) = 0 [which of course follows from that the integral of function
on a null set is zero on any measure space]. That is to say the measure µf is abosoultely
continuous with respect µ, that is, µf ≪ µ. Conversely is also true, which is the context of
Randon-Nikydom’s theorem.

Suppose (Ω,F , µ) is a measure space, and G is a sub σ-algebra of F . Suppose µ is σ-finite
on G, so that there is a sequence Gn ∈ G, Gn ↑ Ω and µ(Gn) < ∞ for every n. Let f be
F -measurable and non-negative such that f is σ-integrable on G, that is, there are Gn ∈ G
such that Gn ↑ Ω and

´

Gn
fdµ < ∞ for every n. Then µf ≪ µ as measures on (Ω,G), and

both µf and µ are σ-finite measure on (Ω,G), therefore, by applying Randon-Nikydom’s
theorem to µ and µf on (Ω,G), there is a G-measurable and non-negative function ρ (unique
up to µ-almost surely) such that µf (A) =

´

A
ρdµ for every A ∈ G [that is, ρ is the Random-

Nikydom’s derivative of µf with respect to µ on G, so denoted by ρ =
dµf

dµ

∣

∣

∣

G
].

dµf

dµ

∣

∣

∣

G
is called

the conditional expectation of f given G, denoted by Eµ [f |G] or simply by E [f |G] if the
measure µ involved is clear. The conditional expectation possesses the following properties:

1) E [f |G] is G-measurable,
2) for every A ∈ G we have

E [f : A] = E [E (f |G) : A]
that is

E [f1A] = E [1AE [f |G]] .
In particular, E [f ] = E [E [f |G]], so that, if f is integrable, so is its conditional expectation

E [f |G], which allows us to define the conditional expectation of an integrable function f by

E [f |G] = E
[

f+|G
]

− E
[

f−|G
]

.

5 Product measures and Fubini’s theorem

1. Product of several σ-algebras. Let A and B be two sets. Then A × B (the product set)
is the set of all ordered pairs (x, y) where x ∈ A and y ∈ B. Let Ω1 and Ω2 be two spaces.
Then Ω1×Ω2 is also called the Cartesian product space. Suppose F1 and F2 are algebras on
spaces Ω1 and Ω2 respectively, then F1 ×F2 is in general not an algebra, but the collection
of all finite unions

⋃k

j=1 Aj ×Bj (where Aj ∈ F1 and Bj ∈ F2 and k is a positive integer) is
an algebra. If Fi are σ-algebras, F1×F2 is in general not a σ-algebra, and we define F1⊗F2

to be the smallest σ-algebra containing F1 × F2, that is, F1 ⊗ F2 = σ {F1 ×F2}. The
construction may be extended to the product space of finite many spaces. More precisely, if
(Ωi,Fi) (i = 1, · · · , n) are measurable spaces, then

F1 ⊗ · · · ⊗ Fn = σ {A1 × · · · × An : Ai ∈ Fi}
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and (Ω1 ⊗ · · · ⊗Ωn,F1 ⊗ · · · ⊗ Fn) is called the product measurable space of (Ωi,Fi).

Exercise 5.1 1) Suppose Si (i = 1, · · · , n) are topological spaces, so that the product space
S1 × · · · × Sn carries the product topology. Show that

B(S1 × · · · × Sn) = B(S1)⊗ · · · ⊗ B(Sn).

2) If (Ωi, Fi) (i = 1, 2, · · · ) are measurable spaces, then

F1 ⊗F2 ⊗F3 = F1 ⊗ (F2 ⊗F3)

= (F1 ⊗F2)⊗F3.

2. Product σ-algebra of countable many σ-algebras. Let us now consider a sequence of
measurable spaces (Ωi,Fi) (i = 1, 2, · · · ). The Cartesain product

∏∞
i=1 Ωi is the space con-

sisting of all sequences (x1, · · · , xi, · · · ) where xi ∈ Ωi for i = 1, 2, · · · , and define
∏∞

i=1 ⊗Fi

to be the smallest σ-algebra containing all
∏∞

i=1 Ai where Ai ∈ Fi for all i and Ai = Ωi

except for finite many i ∈ N. (
∏∞

i=1 Ωi,
∏∞

i=1 ⊗Fi) is called the product measurable space of
(Ωi,Fi), i = 1, 2, · · · .

3. Measurable sections. Now let us come to the construction of product measures on
product spaces. We need the following elementary fact.

Lemma 5.2 If F1 and F2 are algebras on Ω1 and Ω2 respectively, then the collection
A(F1,F2) of all finite disjoint unions

⋃k

i=1 Ai ×Bi for some k ∈ N, where Ai ∈ F1, Bi ∈ F2

and all products Ai×Bi are disjoint, is an algebra on Ω1×Ω2. If F1 and F2 are σ-algebras,
then F1 ⊗F2 = σ {A(F1,F2)}.

Lemma 5.3 Let (Ωi,Fi) (i = 1, 2) be measurable spaces. 1) If A ∈ F1 ⊗ F2, then for each
x1 ∈ Ω1 the section

Ax1 = {x2 ∈ Ω2 : (x1, x2) ∈ A}
is measurable, i.e. Ax1 ∈ F2. Similarly

Ax2 = {x1 ∈ Ω1 : (x1, x2) ∈ A}

belongs to F1.
2) Suppose f is measurable on (Ω1 × Ω2,F1 ⊗ F2), then for each x1 ∈ Ω1, the function

fx1(x2) = f(x1, x2) is F2-measurable.

Proof. Proof of 1). Let E be the collection of all E ⊆ Ω1 × Ω2 such that its x1-section
is measurable. Then E is a σ-algebra containing all A × B where A ∈ F1 and B ∈ F2.
Therefore F1 ⊗F2 ⊂ E which proves 1). To show 2), we notice that

{x2 : fx1(x2) > a} = {x2 : f(x1, x2) > a}

which is the x1-section of {f > a} (which is F1 ⊗ F2-measurable), so its x1-section is F2-
measurable. Therefore fx1 is F2-measurable.

In particular, if Si are topological spaces with Borel σ-algebras, and if f is Borel measur-
able on S1 × S2 with the product topology, then its section fx1 (for each x1 ∈ S1) is Borel
measurable on S2.

4. Product measure of two measures. The following is the main technical fact in the
construction of product measures.
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Lemma 5.4 Let (Ωi,Fi, µi) (i = 1, 2) be two finite measure spaces. Then for any A ∈
F1⊗F2, x1 → µ2(Ax1) (resp. x2 → µ1(A

x2)) is measurable on (Ω1,F1) (resp. (Ω2,F2)) and

ˆ

Ω1

µ2(Ax1)µ1(dx1) =

ˆ

Ω2

µ1(A
x2)µ2(dx2) (5.1)

the common value is denoted by µ1 × µ2(A), so that µ1 × µ2 is defined on F1 ⊗F2.

Proof. Let L denote the collection of all subsets A ∈ F1 ⊗F2 such that both functions
µ2(Ax1) and µ1(A

x2) are measurable and (5.1) holds. By definition, F1 × F2 ⊂ L , and
by linearlity of integration, we can see that L is a ring. On the other hand, by using
MCT, we can show that L is a monotone class. Therefore L must be a σ-algebra, so that
L = F1 ⊗F2.

Theorem 5.5 Let (Ωi,Fi, µi) (i = 1, 2) be two σ-finite measure spaces. Choose a sequence
Gn = An × Bn , where An ↑ Ω1, An ∈ F1, µ1(An) < ∞, and similarly, Bn ↑ Ω2, Bn ∈ F2,
µ2(Bn) < ∞, for every n. If E ∈ F1 ⊗F2 then define

m(E) = lim
n→∞

µ1 × µ2(E ∩Gn)

where µ1 × µ2(E ∩Gn) is defined in Lemma 5.4. Then m is the unique σ-finite measure on
(Ω1 ×Ω2,F1 ⊗F2), such that

m(A× B) = µ1(A)µ2(B) ∀A ∈ F1, B ∈ F2. (5.2)

which will be denoted by µ1 × µ2, called the product measure of µ1 and µ2.

Proof. Uniqueness follows from Lemma 2.3. Given a sequence {Gn} satisfying the
conditions in the theorem. Since µ1 × µ2(E ∩ Gn) is non-negative and increasing, so that
m is well defined on F1 ⊗ F2. Clearly m(Ø) = 0, so we need to show that m is countably
additive. We prove this in two steps.

Note that µ1(· ∩An) and µ2(· ∩Bn) are finite measures, so that µ1 × µ2(E ∩Gn) is well-
defined via (5.1), and is non-negative, increasing in n. We want to show that m is countably
additive. Suppose Ek ∈ F1 ⊗F2 are disjoint sequence, and E = ∪∞

k=1Ek. Then, for every n

m(E ∩Gn) =

ˆ

Ω2

µ1((E ∩Gn)
x2)µ2(dx2) =

ˆ

Ω2

µ1(∪k(Ek ∩Gn)
x2)µ2(dx2)

=

ˆ

Ω2

∑

k

µ1((Ek ∩Gn)
x2)µ2(dx2) =

∑

k

ˆ

Ω2

µ1((Ek ∩Gn)
x2)µ2(dx2)

=
∑

k

m(Ek ∩Gn).

where the fourth equality follows from MCT (series version). It follows that

m(E ∩Gn) ≤
∑

k

m(Ek)

so that, by letting n → ∞ we obtain m(E) ≤∑k m(Ek). On the other hand, for every N ,

m(E ∩Gn) ≥
N
∑

k=1

m(Ek ∩Gn).
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Letting n → ∞ we have m(E) ≥ ∑N

k=1 m(Ek), so that we also have m(E) ≥ ∑

k m(Ek).
Therefore m(E) =

∑

k m(Ek) which completes the proof.

5. Product measure of finite many σ-finite measures. Obviously, the same approach is
applied to finite many σ-finite measure spaces, and we have

Theorem 5.6 Suppose (Ωi,Fi, µi) (i = 1, · · · , n) are σ-finite measure spaces, then there is a
unique σ-finite measure µ1×· · ·×µn called the product measure on (Ω1×· · ·×Ωn,F1⊗· · ·⊗Fn)
such that

µ1 × · · · × µn(A1 × · · · × An) = µ1(A1) · · ·µn(An) ∀Ai ∈ Fi.

6. Product probability measure of countable many probability measures. However, there
is obstruction for constructing product measures on the product space of countably many
measure spaces, one can not, in general, use

∏∞
i=1 µi(Ai) to define the measure of

∏∞
i=1 Ai

even if Ai = Ωi except finite many i. This approach on the other hand works for probability
spaces (Ωi,Fi, µi) as in this case

∏∞
i=1 µi(Ai) for

∏∞
i=1 Ai, where Ai = Ωi except finite many

i, becomes a finite product as µi(Ωi) = 1 for sufficient large i.

Theorem 5.7 Suppose (Ωi,Fi, µi) (i = 1, 2, · · · ) are probability spaces, then there is a
probability measure

∏∞
i=1 µi (called the product probability measure) on (

∏∞
i=1 Ωi,

∏∞
i=1 ⊗Fi)

such that
∞
∏

i=1

µi(A1 × · · · × Ak × · · · ) =
∞
∏

i=1

µi(Ai).

for any Ai ∈ Fi for all i and Ai = Ωi except for finite many i.

Proof. [The proof is not examinable] Let R denote the ring of all subsets E ⊂ ∏∞
i=1 Ωi

which has the following form:

E =
n
⋃

j=1

Aj, where Aj = A
(j)
1 × · · · × A

(j)
k × · · ·

A
(j)
k ∈ Fk for j = 1, · · · , n, and for every j, there is kj, such that A

(j)
k = Ωk for every k > kj ,

for some n ∈ N. If E ∈ R then we may choose a decomposition above such that Aj (for
some n, j = 1, · · · , n) are disjoint, and define

m(E) =
n
∑

j=1

m(Aj) where m(Aj) = µ1(A
(j)
1 ) · · ·µk(A

(j)
k ) · · ·

each m(Aj) is in fact a finite product as all µk are probability measures. To see why m
is well defined and is in fact a measure on R, we make the following crucial observation.
If E1, · · · , EN ∈ R, then, there is a common K, such that for all n = 1, · · · , N each
En = A(n) × ΩK+1 × · · · for some A(n) ∈∏K

k=1Fk, and therefore

E ≡
N
⋃

n=1

En = A× ΩK+1 × · · ·

for some A ∈∏K

k=1 Fk. Since µk are probability measures, so by definition

m(En) = µ1 × · · · × µK(A
(n))
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(the identity is no longer ensured if there are infinite many µk with total mass µk(Ωk) 6= 1).
Since µ1 × · · · × µK is a measure, so that, if En (n = 1, · · · , N) are disjoint, then

m(E) = µ1 × · · · × µK(A) =
N
∑

n=1

µ1 × · · · × µK(A
(n)) =

N
∑

n=1

m(En)

which shows that m is well defined on the ring R and m is finitely additive. Next, the
standard machinary may be applied to construct the product probability

∏∞
i=1 µi. Firstly,

define outer measure

m∗(E) = inf

{

∞
∑

n=1

m(En) : where En ∈ R such that
∞
⋃

n=1

En ⊃ E

}

for every sunset E ⊂ ∏∞
i=1 Ωi. Let M denote the σ-algebra of all m∗-measurable subsets.

Then m∗ is a measure on M (by the Carathodory extension theorem). Since R is a ring
and m is finitely additive, we thus must have R ⊂ M. Since

∏∞
i=1 ⊗Fi = σ(R) ⊂ M, so

that m∗ restricted on
∏∞

i=1 ⊗Fi is a probability measure. The construction is complete.

7. Fubini’s theorem. Let us now turn to the Fubini theorem.
Let (Ωi,Fi, µi) (i = 1, 2) be two σ-finite measure spaces. Suppose f : Ω1×Ω2 → (−∞,∞)

is a measurable function, such that for almost all x1 ∈ Ω1, fx1 is integrable on (Ω2,F2, µ2).
Hence, there is a set N1 ∈ Ω1 with µ1(N1) = 0, and for any x1 ∈ Ω1\N1, fx1 ∈ L1(Ω2,F2, µ2),
so that we can define

h(x1) =

ˆ

Ω2

fx1(x2)µ2(dx2) if x1 ∈ Ω1 \N1

otherwise h(x1) = 0. If there is a h̃ ∈ L1(Ω1,F1, µ1), such that h̃ = h almost surely w.r.t.
µ1, then we can form an integral

I1,2(f) =

ˆ

Ω1

h̃(x1)µ1(dx1).

One can show that, if I1,2(f) exists (i.e. there is some N1 and h̃ satisfying the above con-
ditions), then I1,2(f) does not depend on N1 and h̃, therefore I1,2(f) is called an iterated
integral of f over Ω1 ×Ω2, denoted by

ˆ

Ω1

(
ˆ

Ω2

f(x1, x2)µ2(dx2)

)

µ1(dx1).

Similarly we define the iterated integral

ˆ

Ω2

(
ˆ

Ω1

f(x1, x2)µ1(dx1)

)

µ2(dx2).

Theorem 5.8 (Fubini’s theorem) Let µj be σ-finite measure on (Ωj,Fj), where j = 1, 2.
Suppose f : Ω1 × Ω2 → (−∞,∞) is a measurable function on the product measure space
(Ω1 ×Ω2,F1 ⊗F2).

1) If f ∈ L1(Ω1×Ω2,F1⊗F2, µ1×µ2), then both iterated integrals exist and equal to the
integral

´

Ω1×Ω2
fd(µ1 × µ2) .

2) Conversely, if one of the iterated integral of |f | is finite, then f ∈ L1(Ω1 × Ω2,F1 ⊗
F2, µ1 × µ2).
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Proof. By Theorem 5.5 and the definition of the product measure µ1 × µ2, for every
E ∈ F1 ⊗F2 we have

ˆ

Ω1×Ω2

1Edµ1 × µ2 =

ˆ

Ω2

[
ˆ

Ω1

1Edµ1

]

dµ2 =

ˆ

Ω1

[
ˆ

Ω2

1Edµ2

]

dµ1

which yields that Fubini’s theorem holds for every non-negative simple measurable function.
Suppose f is non-negative and F1 ⊗ F2-measurable, then we can choose a sequence of

non-negative, measurable simple functions ϕn : Ω1 × Ω2 → [0,∞) such that ϕn ↑ f . By
MCT we have

ˆ

Ω1×Ω2

fdµ1 × µ2 = lim
n→∞

ˆ

Ω1×Ω2

ϕndµ1 × dµ2

= lim
n→∞

ˆ

Ω2

[
ˆ

Ω1

ϕndµ1

]

dµ2 = lim
n→∞

ˆ

Ω2

Φndµ2

where

Φn =

ˆ

Ω1

ϕndµ1

which are non-negative, F2-measurable and Φn ↑, thus by MCT applying to {Φn} on
(Ω2,F2, µ2) to obtain

lim
n→∞

ˆ

Ω2

Φndµ2 =

ˆ

Ω2

lim
n→∞

Φndµ2 =

ˆ

Ω2

lim
n→∞

[
ˆ

Ω1

ϕndµ1

]

dµ2.

Since for every x2, ϕn(·, x2) ↑ f(·, x2) and non-negative, measurable, so by applying MCT
on (Ω1,F1, µ1) we thus have

lim
n→∞

[
ˆ

Ω1

ϕndµ1

]

=

ˆ

Ω1

fdµ1.

Putting the previous equalities together we obtain
ˆ

Ω1×Ω2

fdµ1 × µ2 =

ˆ

Ω2

[
ˆ

Ω1

fdµ1

]

dµ2

and similarly
ˆ

Ω1×Ω2

fdµ1 × µ2 =

ˆ

Ω1

[
ˆ

Ω2

fdµ2

]

dµ1

for any non-negative, measurable function f . The conclusions of the theorem follow imm-
mediately.

8. Completion of product measure spaces. Recall that, if (Ω,F , µ) is a σ-finite measure
space, then Fµ is the completed σ-algebra of F under the measure µ, that is, N denotes
the collection of all subsets of Ω with outer measure zero, then Fµ = σ{F ,N}. We have
shown that µ can be uniquely extended to a σ-finite measure on Fµ, denoted again by µ.
Complications may arise if we consider the completion of (Ω1 × Ω2,F1 ⊗ F2, µ1 × µ2). In
general, the completion of F1⊗F2 under µ1×µ2 does not coincide with the product σ-algebra
of the completions of Fi under µi, but we have

Lemma 5.9 Let (Ωi,Fi, µi) be two σ-finite measure spaces. Then

Fµ1

1 ⊗Fµ2

2 ⊂ (F1 ⊗F2)
µ1×µ2

and
(F1 ⊗F2)

µ1×µ2 = (Fµ1

1 ⊗Fµ2

2 )µ1×µ2 .
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Proof. The proof is routine, left as an exercise.
If f : Ω1 × Ω2 → (−∞,∞) is measurable w.r.t (F1 ⊗ F2)

µ1×µ2 , then its section fx1 :
Ω2 → (−∞,∞) by sending x2 to f(x1, x2) is not necessary measurable w.r.t. Fµ2

2 , however,
according to definition, there is a function f̃ : Ω1 × Ω2 → (−∞,∞) which is measurable
w.r.t. F1 ⊗ F2 and f = f̃ µ1 × µ2-almost surely, and f̃x1 is measurable w.r.t. F2 for all
x1 ∈ Ω1. Moreover it is clear that f̃x1 = fx1 for almost all x1 ∈ Ω1 with respect to µ1.
Therefore fx1 is Fµ2

2 -measurable for µ1-almost all x1 ∈ Ω1. The iterated integrals of f are
defined to be those of f̃ , and we can show that they are independent of the choice of a version
f̃ .

If f ∈ L1(Ω1×Ω2, (F1⊗F2)
µ1×µ2 , µ1×µ2), then we choose f̃ which is F1⊗F2-measurable

such that f = f̃ µ1 × µ2-a.e., applying the Fubini theorem to f̃ , we thus have the following
refined version of Fubini’s theorem.

Theorem 5.10 (Fubini’s theorem) Let (Ωi,Fi, µi) be two σ-finite measure spaces. Suppose
f : Ω1 ×Ω2 → (−∞,∞) is (F1 ⊗F2)

µ1×µ2-measurable.
1) If f ∈ L1(Ω1 × Ω2, (F1 ⊗ F2)

µ1×µ2 , µ1 × µ2), then the two iterated integrals of f exist
and coincide with the integral

´

Ω1×Ω2
fd(µ1 × µ2).

2) Conversely, if one of the iterated integral of |f̃ | is finite, where f̃ = f µ1×µ2-a.e. and
f̃ is F1 ⊗F2-measurable, then f ∈ L1(Ω1 ×Ω2, (F1 ⊗F2)

µ1×µ2 , µ1 × µ2).

6 Some concepts in probability

Let us now set up the probability setting by using the theory of measures developed in the
previous sections.

Let (Ω,F ,P) be a probability space. An F -measurable function X (complex, or valued
in [−∞,∞]) on Ω is called a random variable. The concept of random variables may be
generalised to mappings, which may be useful in discussing probability models. In general, if
(Ω1,F1) and (Ω2,F2) are two measurable spaces, then a mapping Φ : Ω1 → Ω2 is measurable
if Φ−1(A) ∈ F1 whenever A ∈ F2. Thus a real random variable X : Ω → R is just a
measurable map from (Ω,F) to (R,B(R)).

If X is integrable or non-negative random variable, then its integral
´

Ω
X(ω)P(dω) is

called the expectation ofX, or the mean value ofX, denoted by E [X]. We say the expectation
of X exists if X is integrable.

Exercise 6.1 The inclusion-exclusion formula holds:

P

(

∞
⋃

j=1

Aj

)

=
∑

j

P(Aj)−
∑

j1<j2

µP(Aj1Aj2) +
∑

j1<j2<j3

P(Aj1Aj2Aj3)

− · · ·+ (−1)k−1
∑

j1<···<jk

P(Aj1 · · ·Ajk) + · · ·

where Aj ∈ F for j = 1, 2, · · · .

Exercise 6.2 1) Let f : Ω → S. Show that f−1(∪αAα) = ∪αf
−1(Aα) and f−1(Ac) =

(f−1(A))
c
for any sets A,Aα where α runs over an arbitrary index set.

2) Let f : Ω → S where (Ω,F) and (S,Σ) are two measurable spaces. Show that

f−1(Σ) ≡
{

f−1(A) : A ∈ Σ
}

is a σ-algebra on Ω, and f is measurable (with respect to F) if and only if f−1(Σ) ⊂ F .
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Exercise 6.3 Let (S,Σ) be a measurable space, and Xα : Ω → S (α ∈ Λ) be a family
of functions on Ω taking values in S. Then we use σ {Xα : α ∈ Λ} to denote the smallest
σ-algebra such that each Xα is a measurable map from (Ω, σ{(Xα)α∈Λ}) to (S,Σ).

1) Let Σ0 = {X−1
α (A) : A ∈ Σ and α ∈ Λ}. Show that

σ {Xα : α ∈ Λ} = σ (Σ0) .

2) Let F ≡ σ {Xα : α ∈ Λ}. Show that, if αj ∈ Λ (j = 1, 2, · · · ) is a countable subset of
Λ and A ∈ Σ, then

{

ω : Xαj
(ω) ∈ A for all j = 1, 2, · · ·

}

belongs to F . The above event is often written as
{

Xαj
∈ A for j = 1, 2, · · ·

}

.

6.1 Laws, distribution functions

These are basic concepts associated with random variables. Let us begin with the following

Proposition 6.4 Let (Ω,F) and (S,Σ) be two measurable spaces, P a measure on (Ω,F),
and X : Ω → S be a measurable map. Define

µ(A) ≡ P
(

X−1(A)
)

= P [X ∈ A]

= P ({ω : X(ω) ∈ A})

for every A ∈ Σ. Then µ is a measure on (S,Σ), denoted by P ◦ X−1, which is called the
distribution of X.

In particular, if X is a random variable on a probability space (Ω,F ,P) taking values
in Rn, then P ◦ X−1 is a probability measure on (Rn,B(Rn)), called the law or called the
distribution of the random variable X. Sometimes we also use µX to denote the distribution
of X.

If X : Ω → R is a real-valued random variable, then its distribution function

F (x) = P (X ≤ x)

= P ({ω : X(ω) ≤ x})
= µX ((−∞, x]) ,

is a non-decreasing function on R with values in [0, 1]. Then 0 ≤ F ≤ 1; F ↑; limx→−∞ F (x) =
0; limx→∞ F (x) = 1; F is right-continuous:

lim
x↓x0

F (x) = F (x0) ∀x0 ∈ R.

The Lebegue-Stieltjes measure mF associated with the increasing and right-continuous func-
tion F is the unique measure such that

mF ((a, b]) = F (b)− F (a) = P (a < X ≤ b) = µX((a, b])

for all a < b. Since the collection C of all (a, b] (where a < b are reals) is a π-system, according
to the Uniqueness Lemma 2.2, mF = µX , that is, the distribution (law) of a real random
variable X is the Lebesgue-Stieltjes measure associated with the distribution function of X.
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6.2 Independence

Let (Ω,F ,P) be a probability space.

1. Independent events. Recall that, if A,B ∈ F be two events, then A and B are
independent, if

P(A ∩B) = P(A)P (B). (6.1)

Let

FA = σ{A} = {Ω, A,Ac, ∅},
FB = σ{B} = {Ω, B,Bc, ∅}.

Then (6.1) implies that

P(E ∩ F ) = P(E)P(F ), ∀E ∈ FA, F ∈ FB,

and therefore the σ-algebras FA and FB are independent.

Definition 6.5 1) Let {Fα : α ∈ ∧} be a collection of sub σ-algebras of F . Then {Fα : α ∈ ∧}
are independent if for any k ∈ N, and any α1, · · · , αk ∈ ∧ such that αi 6= αj if i 6= j, we
have

P(A1 · · ·Ak) = P(A1) · · ·P(Ak), ∀A1 ∈ Fα1 , · · · , Ak ∈ Fαk
.

2) Let {Fα : α ∈ ∧} be a family of events: Fα ∈ F . Then we say {Fα : α ∈ ∧} are
independent if {σ(Fα) : α ∈ ∧} are independent.

3) Let {Xα : α ∈ ∧} be a family of random variables. Then {Xα : α ∈ ∧} are independent
if the family of σ-algebras {σ(Xα) : α ∈ ∧} are independent.

2. Independence via π-system. In elementary probability theory, we already give a
definition of independence for random variables. You should show that the above definition
coincides with the one you have learned before. The following Lemma is very useful although
it is very simple and follows a simple application of Lemma 2.2.

Lemma 6.6 Let Fα ≡ σ {Cα} where each Cα is a π-system in the sense that

A,B ∈ Cα implies that A ∩B ∈ Cα.

Then {Fα : α ∈ ∧} are independent if and only if for any k ∈ N, any F1 ∈ Cα1 , · · · , Fk ∈ Cαk

where α1, · · · , αk are different, we have

P [F1 ∩ · · · ∩ Fk] = P [F1] · · ·P [Fk] .

In fact, we can show the equality by induction on k. Consider two measures on Fαk

defined by
µ1(E) = P [F1 ∩ · · · ∩ Fk−1 ∩ E]

and
µ2(E) = P [F1 ∩ · · · ∩ Fk−1]P(E)

where Fi as in the lemma, but fixed, and E ∈ Fαk
. The induction assumption and the

condition in the lemma implied that µ1 = µ2 on Cαk
, hence, by Lemma 2.2, µ1 = µ2 on Fαk

and the proof is complete.

3. Independent random variables.
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Theorem 6.7 Let X1, · · · , Xn, · · · be a sequence of real random variables. Then X1, · · · , Xn, · · ·
are independent if and only if for any k ∈ N, and any x1, · · · , xk ∈ R

P [X1 ≤ x1, · · · , Xk ≤ xk] = P [X1 ≤ x1] · · ·P [Xk ≤ xk] .

That is, the joint distribution of X1, · · · , Xn is the product of the distribution functions of
the random variables Xk, 1 ≤ k ≤ n.

This follows from the previous lemma, as Ck the collection of all subsets {Xk ≤ x} where
x runs through all reals is a π-system, where k = 1, 2, · · · .

Therefore, the joint law or distribution of a sequence of independent random variables
(X1, X2, · · · , Xn, · · · ) is the product probability measure µ1 × · · · × µn × · · · , where µn is
the distribution of Xn. In particular, if {Xn : n = 1, 2, · · · } is a sequence of independent real
random variables, then its joint law (or called joint distribution) is the product probability
measures of the Lebesgue-Stieltjes measuremFn

where Fn(x) = P [Xn ≤ x] is the distribution
function of Xn, n = 1, 2, · · · .
Theorem 6.8 Let X be a random variable (valued in a measurable space) on some proba-
bility space. Then there is a sequence of independent identically distributed random variables
{Xn : n ∈ N}, each Xn has the same law as that of X.

Proof. [The proof is not examinable] Let X be a random variable taking its values in a
measurable space (S,G), and let µ be the distribution of X. Then µ is a probability measure.
Let (Sn,Gn, µn) = (S,G, µ) (n = 1, 2, · · · ) and let P = µ1 × · · · × µn × · · · be the product
probability measure on Ω =

∏∞
n=1 Sn. Define Xn : Ω → S by Xn(w) = wn if w = (wn) ∈ Ω

for n = 1, 2, · · · . Then Xn are random variables on (Ω,F ,P) (where F =
∏∞

n=1 Gn) and by
construction, Xn have the common distribution µ, and (Xn) are independent.

6.3 Borel-Cantelli lemma

1. Limiting events, Borel-Cantelli’s first and second lemma. Let An ∈ F for n = 1, 2, · · · .
The event that “An’s occur infinitely often” (or “infinitely many An occur”) is given by

lim sup
n→∞

An =
∞
⋂

m=1

∞
⋃

n=m

An

= {ω : ω belongs to infinitely many An} .
The event lim supn→∞An is also denoted by {An : i.o.}. Similarly, though less important in
applications, the event that “An take place eventually” is

lim inf
n→∞

An =
∞
⋃

m=1

∞
⋂

n=m

An

= {ω : ∃N(ω) s.t. ω ∈ An for all n ≥ N(ω)}
= {ω : ω eventually belongs to An for large n} .

This event is denoted sometimes by {An : ev.}. By definition, it is easy to see that

lim sup
n→∞

An =

{

∞
∑

n=·

1An
= ∞

}

=

{

lim sup
n→∞

1An
= 1

}

while
lim inf
n→∞

An =
{

lim
n→∞

1An
= 1
}

.
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Theorem 6.9 Let An ∈ F (where n = 1, 2, · · · ).
1) (Borel-Cantelli Lemma, first Borel-Cantelli lemma). If

∑∞
n=1 P(An) < ∞, then

P [lim supn→∞An] = 0.
2) (Borel zero-one criterion, second Borel Cantelli lemma). If the events{An} are inde-

pendent, then
∑∞

n=1 P(An) = ∞ if and only if P [lim supn→∞An] = 1.

Proof. 1) If
∑∞

n=1 P(An) < ∞ then limm→∞

∑∞
n=m P(An) = 0, and therefore

P [An : i.o.] = lim
m→∞

P

(

⋃

n≥m

An

)

≤ lim
m→∞

∑

n≥m

P(An) = 0.

2) If An are independent, and if
∑∞

n=1 P(An) = ∞, then

P

(

∞
⋂

n=m

Ac
n

)

= lim
N→∞

N
∏

n=m

P(Ac
n) = lim

N→∞

N
∏

n=m

(1− P(An))

≤ lim
N→∞

exp

(

−
N
∑

n=m

P(An)

)

= 0

for every m, where we have used the elementary inequality: 1− x ≤ e−x for x ∈ [0, 1]. Since

{An : i.o}c =
∞
⋃

m=1

∞
⋂

n=m

Ac
n

and every
⋂∞

n=m Ac
n has probability zero, so that their union {An : i.o}c over m = 1, 2, · · ·

has zero probability too, hence P [An : i.o] = 1.
2. Tail events and tail σ-algebra. The lim supAn and lim inf An are examples of so-called

tail events – these events are determined by {Am+1, Am+1, · · · , An, · · · } for every m. For
example

lim sup
n→∞

An =

{

∞
∑

n=m+1

1An
= ∞

}

for any m. From Borel zero-one criterion above, we can deduce the limiting behavior of
these tail events by combining with the concept of independence. If X1, X2,· · · , Xn, · · · is
a sequence of random variables on (Ω,F ,P), then the σ-algebra G∞ =

⋂∞
n=1 σ {Xj : j > n}

is called the tail σ-algebra of {Xk}k≥1. Any element in G∞ is called a tail event.

Proposition 6.10 (A. Kolomogorov’s 0-1 law) If {Xn} is a sequence of independent ran-
dom variables on (Ω,F ,P), and G∞ =

⋂∞
n=1 σ {Xj : j > n}. Then P (A) = 0 or 1 for every

A ∈ G∞. In particular, if {An} is a sequence of independent events, then P [lim supn→∞An] =
0 or 1 .

Proof of 0-1 law. Since σ {Xj : j ≤ n} and σ {Xj : j > n} are independent for any
n = 1, 2, · · · , so that σ {Xj : j ≤ n} and G∞ for every n are independent. It follows
that

⋃∞
n=1 σ {Xj : j ≤ n} and G∞ are independent. If B,C ∈ ⋃∞

n=1 σ {Xj : j ≤ n}, then
B ∩C ∈ ⋃∞

n=1 σ {Xj : j ≤ n} as well, so
⋃∞

n=1 σ {Xj : j ≤ n} is a π-system, thus, by Lemma
6.6, the σ-algebra

σ

[

∞
⋃

n=1

σ {Xj : j ≤ n}
]

= σ {Xj : j ≥ 1}
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and G∞ are independent. Since G∞ ⊂ σ {Xj : j ≥ 1}, G∞ and itself are independent. There-
fore, for every A ∈ G∞, P(A) = P(A ∩ A) = P(A)2, which yields that P(A) = 0 or
P(A) = 1. The last conclusion comes from the fact that lim supn→∞ An ∈ G∞, so that
P [lim supn→∞An] = 0 or 1.

3. Example. Suppose (Xn) is a sequence of independent random variables (real or
complex), and G∞ is its tail σ-algebra, and suppose {bn} be an increasing sequence of positive
numbers such that bn ↑ ∞. Then the following events

{

lim
n→∞

Xn exists
}

,

{

∞
∑

n=1

Xn converges

}

and

{

lim
n→∞

X1 + · · ·+Xn

bn
exists

}

are all tail events, i.e. belong to G∞, and thus have probability one or zero.

7 Conditional expectations

1) Definition of Conditional expectations. Suppose (Ω,F , µ) is a measure space, G ⊆ F is
a sub-algebra and µ is σ-finite on G. If X is a non-negative real random variable which is
σ-integrable on G, then there is a G-measurable random variable Eµ [X|G], the conditional
expectation of X, which is a unique (up to almost everywhere) function Y such that

1) Y is G-measurable,
2) Eµ [Y 1A] = Eµ [X1A] for every A ∈ G.
A random variable Y (either non-negative or integrable) which satisfies conditions 1) and

2) above is called the conditional expectation of a random variable X , denoted by Eµ [X|G].
Therefore, if a random variable X is non-negative and σ-integrable on G, then its condi-

tional expectation Eµ [X|G] exists and unique up to almost everywhere.

In what follows, let us work with a probability space (Ω,F ,P), and G ⊆ F is a sub
σ-algebra. THe conditional expectation of X (if exists) will be denoted by E [X|G].

2. Conditional expectations for integrable functions. Suppose X is integrable, thus
X+ and X− are non-negative, F -measurable and integrable, thus E [X±|G] are defined,
G-measurable, and integrable. Therefore both E [X±|G] are finite almost surely, so that

E [X|G] = E
[

X+|G
]

− E
[

X−|G
]

is integrable. E [X|G] is G-measurable and E [X : A] = E [E (X|G) : A] for every A ∈ G, so
that E [X|G] is the conditional expectation of X.

If X is F -measurable and non-negative, then for each n, X∧n is bounded and X∧n ↑ f .
Thus E [X ∧ n|G] is defined for each n, and E [X ∧ n|G] is increasing, its limit Y exists. Y
is G-measurable, and for every A ∈ G, according to MCT, we have E [X : A] = E [Y : A], so
that Y is the conditional expectation of X, denoted by E [X|G].

3. Example. Let (Ω,F ,P) be a probability space, and A ∈ F with 0 < P(A) < 1. Let
G = σ(A). If X ∈ L1(Ω,F ,P) then

E [X|G] = E [X : A]

P(A)
1A +

E [X : Ac]

P(Ac)
1Ac .

In general, if {Aj} is a countable partition of Ω, i.e. ∪jAj = Ω, {Aj} are disjoint and
P(Aj) > 0, then

E [X|G] =
∞
∑

j=1

E [X : Aj]

P(Aj)
1Aj

26



where G = σ {Aj : j = 1, 2, · · · }.
4. Notations. The following convention on conditional expectations will be assumed. If

Z is a random variable, then the conditional expectation of X given Z, denoted by E [X|Z],
is defined to be the conditional expectation of X given σ(Z). If Z1, · · · , Zn is a finite family
of random variables, then we define

E [X|Z1, · · · , Zn] = E [X|σ(Z1, · · · , Zn)] .

In general, if {Zα}α∈Λ is a family of random variables, then

E [X|Zα;α ∈ Λ] = E [X|σ({Zα}α∈Λ)] .

5. Example. Let X and Z be two random variables on a probability space (Ω,F ,P) with
continuous joint probability density function p(x, z), i.e.

P {(X,Z) ∈ D} =

¨

D

p(x, z)dxdz.

Then

E [f(X)|Z] =
´

R
f(x)p(x, Z)dx
´

R
p(x, Z)dx

where f is Borel measurable, non-negative or/and f(X) is integrable. In fact, formally

P [X = x|Z = z] =
P(X = x, Z = z)

P (Z = z)

=
p(x, z)

´

R
p(x, z)dx

.

6. Properties of the conditional expectations.
6.1 ) E [E [X|G]] = E(X), i.e. the expectation of conditional expectation doesn’t change.

If X is integrable, and X is G-measurable, then E [X|G] = X. If Z is G-measurable,
thenE [ZX|G] = ZE[X|G].

6.2) X → E(X|G) is linear, additive and positive.

6.3) Convergence Theorems. 6.3.1) MCT for conditional expectations: If 0 ≤ Xn ↑
X then E [Xn|G] ↑ E [X|G]. 8.3.2) Fatou’s Lemma: If Xn ≥ 0, then E [lim infXn|G] ≤
lim inf E [Xn|G)]. 8.3.3) Dominated Convergence: If |Xn| ≤ Z for some Z ∈ L1(Ω,F ,P) and
limXn = X, then E [Xn|G] ⇒ E [X|G].

6.4) If G2 ⊂ G1 ⊂ F , then E {E [X|G1] |G2} = E [X|G2] (this is called the power law for
conditional expectations).

7. Jensen’s inequality for conditional expectations. If ϕ is convex, and both X and ϕ(X)
are integrable, then

ϕ (E[X|G]) ≤ E [ϕ(X)|G]
almost surely.

Let us prove the Jensen inequality. Recall that ϕ is convex on R if

ϕ(λs+ (1− λ)t) ≤ λϕ(s) + (1− λ)ϕ(t)
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for all s, t ∈ R and λ ∈ [0, 1], which is equivalent to that

ϕ(u)− ϕ(s)

u− s
≤ ϕ(t)− ϕ(u)

t− u

for any s < u < t (with u = λs+ (1− λ)t). In particular, the right-derivative

ϕ′
+(s) = lim

t↓s

ϕ(t)− ϕ(s)

t− s
= inf

t>s

ϕ(t)− ϕ(s)

t− s

exists. Similarly

ϕ′
−(t) = lim

s↑t

ϕ(t)− ϕ(s)

t− s
= sup

s<t

ϕ(t)− ϕ(s)

t− s
.

and both t → ϕ′
±(t) are increasing. By definition, for s < t we have

ϕ(t)− ϕ(s)

t− s
≤ ϕ′

−(t)

that is
ϕ(s) ≥ ϕ(t) + ϕ′

−(t)(s− t)

for s < t. While if s > t, then

ϕ(s)− ϕ(t)

s− t
≥ ϕ′

+(t) ≥ ϕ′
−(t)

we thus also have
ϕ(s) ≥ ϕ(t) + ϕ′

−(t)(s− t).

Therefore, for a convex function ϕ, we have

ϕ(s) ≥ ϕ(t) + ϕ′
−(t)(s− t) for all s. (7.1)

Applying (7.1) t = E [X|G] and s = X, to obtain

ϕ(X) ≥ ϕ(E [X|G]) + ϕ′
−(E [X|G])(X − E [X|G]).

Now t → ϕ′
−(t) is increasing, so that it is Borel measurable, thus ϕ′

−(E [X|G]) is G-measurable.
Taking conditional expectation we deduce that

E [ϕ(X)|G] ≥ ϕ(E [X|G]) + E
[

ϕ′
− (E [X|G]) (X − E [X|G])|G

]

= ϕ(E [X|G]) + ϕ′
− (E [X|G])E [(X − E [X|G])|G]

= ϕ(E [X|G]).

8 Uniform integrability

1. Definition of uniform integrability. Let (Ω,F ,P) be a probability space. The concept of
uniform integrability for a family of integrable functions is used to handle the convergence in
L1(Ω). In spirit, it is very close to that of uniform convergence, uniform continuity etc. that
you have learned in the analysis course. If f is integrable, then f is finite almost everywhere.
Hence |f |1{|f |<N} ↑ |f | almost everywhere as N ↑ ∞, thus by the Monotone Convergence
Theorem

´

Ω
|f |1{|f |<N}dP ↑

´

Ω
|f |dP, so that limN→∞

´

{|f |≥N}
|f |dP = 0.
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Definition 8.1 Let A be a family of integrable functions on (Ω,F , µ). A is uniformly
integrable if

lim
N→∞

sup
ξ∈A

ˆ

{|ξ|≥N}

|ξ|dP = 0 .

That is, E [|ξ| : |ξ| ≥ N ] tends to zero uniformly on A as N → ∞.

2. Some simple properties.

2.1 ) Any finite family of integrable random variables is uniformly integrable.

2.2 ) Suppose A ⊂ L1(Ω) and there is η ∈ L1(Ω) such that |ξ| ≤ η for every ξ ∈ A, then
A is uniformly integrable.

2.3) A ⊂ Lp(Ω) such that supξ∈A

´

Ω
|ξ|pdP < ∞ for some p > 1 [which is equivalent to

that A is bounded in Lp(Ω)], then A is uniformly integrable. In fact,

sup
ξ∈A

ˆ

{|ξ|≥N}

|ξ|dµ ≤ sup
ξ∈A

ˆ

{|ξ|≥N}

1

Np−1
|ξ|pdµ

≤ 1

Np−1
sup
ξ∈A

E [|ξ|p] → 0.

Theorem 8.2 Let A ⊂ L1(Ω). Then A is uniformly integrable if and only if
(a) A is a bounded subset of L1(Ω), that is, supξ∈A E [|ξ|] < ∞.
(b) For any ε > 0 there is a δ > 0 such that supξ∈A E [|ξ| : E] ≤ ε whenever E ∈ F with

µ(E) ≤ δ.

Proof. Suppose A is uniformly integrable. For any E ∈ F and N > 0
ˆ

E

|ξ|dP =

ˆ

E∩{|ξ|<N}

|ξ|dP+

ˆ

E∩{|ξ|≥N}

|ξ|dP

≤ N +

ˆ

{|ξ|≥N}

|ξ|dP .

Given ε > 0, chooseN > 0 such that supξ∈A E [|ξ| : |ξ| ≥ N ] ≤ ε/2. Then supξ∈A E [|ξ| : E] ≤
N + ε/2 for any E ∈ F . Thusδ = ε/(4N) will do.

Conversely, suppose 1) and 2) are satisfied. Let β = supξ∈A E [|ξ|]. Then, by the Markov
inequality, P {|ξ| ≥ N} ≤ β/N for any N > 0. For any ε > 0, there is a δ > 0 such that the
inequality in 2) holds. Let N = β/δ. Then P {|ξ| ≥ N} ≤ δ so that E [|ξ| : |ξ| ≥ N ] ≤ ε for
any ξ ∈ A.

Corollary 8.3 Suppose A ⊂ L1(Ω) and η ∈ L1(Ω) such that E [1D|ξ|] ≤ E [1D|η|] for any
D ∈ F and ξ ∈ A. Then A is uniformly integrable.

3. L1-convergence and uniform integrability. The following theorem demonstrates the
importance of uniform integrability.

Theorem 8.4 Let fn be a sequence of integrable functions on (Ω,F ,P). Then fn → f in
L1(Ω) as n → ∞:

||fn − f ||L1(Ω) = E [|fn − f |] → 0 as n → ∞ ,

if and only if {fn} is uniformly integrable and fn → f in measure as n → ∞.
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Proof. Necessity. For any ε > 0 there is a natural number m such that ||fn − f ||L1(Ω) <
ε/2 for all n > m. Therefore, for every measurable subset E,

sup
n

ˆ

E

|fn|dP ≤
ˆ

E

|f |dP+ sup
k≤m

ˆ

E

|fk|dP+
ε

2
.

In particular

sup
n

E [|fn|] ≤ E [|f |] + sup
k≤m

E [|fk|] +
ε

2

i.e. {fn : n ≥ 1} is bounded in L1(Ω). Moreover, since f, f1, · · · , fm belong to L1, so that
there is δ > 0 such that, if P(E) ≤ δ, then

ˆ

E

|f |dP+
m
∑

k=1

ˆ

E

|fk|dP ≤ ε

2
.

Therefore supn

´

E
|fn|dP ≤ ε as long as µ(E) ≤ δ.

Sufficiency. By Fatou’s lemma
´

Ω
|f |dP ≤ supn

´

Ω
|fn|dP, so that f ∈ L1(Ω). Therefore

{fn − f : n ≥ 1} is uniformly integrable, thus, by Theorem 8.2, for any ε > 0 there is δ > 0
such that

´

E
|fn − f |dP < ε for any E ∈ F satisfying that P(E) ≤ δ. Since fn → f in

probability, there is an N > 0 such that P (|Xn −X| ≥ ε) ≤ δ for any n ≥ N . Therefore

ˆ

Ω

|fn − f |dP ≤
ˆ

{|Xn−X|≥ε}

|fn − f |dP+ εP {fn − f | < ε}

≤ ε+ εP {|fn − f | < ε}
≤ 2ε .

for n ≥ N . By definition, fn → f in L1(Ω).

9 Martingales in discrete-time

In the 1950’s, Doob wrote up a systemic account on the theory of martingales in his book
“Stochastic Processes”. Doob’s book, although about 60 years old, remains very useful to
researchers and still in print. The fundamental results in the martingale theory (in the
restricted sense) include the optional stopping theorem, martingale inequalities and the
martingale convergence theorem.

This chapter is devoted to the theory of martingales in discrete-time. We will only present
the basic aspects of this subject with the emphasis on the use of filtrations (information
flows), stopping times (random times) and sample paths of stochastic sequences.

In probability theory, we study probabilistic properties of random variables: properties
determined by the distributions of random variables. It can be a very subtle problem to
give a good description of laws of random variables taking values in infinite dimensional
spaces. The classical probability deals with sequences of random variables, such as the
law of large numbers, central limit theorems etc., typically starts with the assumption of
independence among elements in the sequence. When we consider stochastic processes, that
is, parametrized families of random variables, we will be interested in relationships between
elements in the family and in particular properties determined by their (finite dimensional)
joint distributions.

The basic concepts in the theory of martingales become natural and apparent as we will
see, if we are allowed ourselves to use a family of different σalgebras on the same sample space
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instead one fixed collection of events, the technical used to prove deep limiting theorems,
which were mastered only by few experts in the past, become systemic tools as long as we
accept the notion of random times. It took some years for the probability society to digest
these two fundamental ideas, and it took a generation to rewrite our textbooks on probability
theory which introduce the basic theory of martingales from the very beginning.

Let us begin with the concept of filtrations (which model flows of information).
Let (Ω,F ,P) be a probability space. Let Z+ = {0, 1, · · · } denote the ordered set of

non-negative integers, and Z+ = Z+ ∪ {∞}.

Definition 9.1 A family (Fn)n∈Z+
of sub σalgebras of F is called a filtration, if Fn ⊂ Fn+1

for every n ∈ Z+.
A probability space (Ω,F ,P) together with a filtration (Fn)n∈Z+

is called a filtered prob-
ability space, denoted by (Ω,Fn,F ,P).

It is useful to consider Fn as the information available to us up to time n.
Given a sequence of random variables X = (Xn)n∈Z+

on the probability space (Ω,F ,P),

for every n, let FX
n be the smallest σ-algebra with respect to which X0, · · · , Xn are mea-

surable, i.e. FX
n = σ{Xm : m ≤ n}.

(

FX
n

)

is called the filtration generated by X. A
sequence of random variables X = (Xn)n∈Z+

can be considered as the state of some random
process evolving in discrete time n = 0, 1, 2, · · · . For example the value of the share price
of a particular company at the end of each trading day. FX

n is the information about this
random evolution up to time n – that is, the history of the price process. In particular, each
Xn is measurable with respect to FX

n , i.e. Xn ∈ FX
n , so that X = (Xn)n≥0 is adapted to

the filtration
(

FX
n

)

, which means that as long as we reach time n, then we know the value
taken by the random variable Xn at that time. Here we abuse the system of notations:
which doesn’t mean Xn is an element of FX

n , but {Xn ∈ B} ∈ FX
n for every Borel set B,

as a convention, here {Xn ∈ B} is the abbreviation of {ω ∈ Ω : Xn(ω) ∈ B}, and the same
convention applies to similar situations.

In stochastic analysis, a stochastic process is any parametrized family of random variables
valued in an arbitrary (measurable) state space. In this book, however, by a stochastic process
we will mean a sequence of random variables (Xn), on a filtered probability space. The name
“stochastic process” (stochastic derives from the Greek for random) is used to underline the
fact we are more concerned with the behavior of a random sequence evolving with time n,
and we are not so interested in the properties of the individual random variables, although
naturally the distribution of each random variable Xn will contribute to the global and
limiting behavior of the whole sequence (Xn).

Definition 9.2 1) A sequence (Xn)n∈Z+
of random variables on (Ω,F ,P) is adapted to a

filtration (Fn), if for every n ∈ Z+, Xn is Fn-measurable. In this case we say (Xn)n∈Z+
is

an adapted sequence, or adapted process (with respect to (Fn)).
2) If X0 ∈ F0 and if Xn is Fn−1-measurable for any n ∈ N , then we say (Xn) is

predictable or previsible.

We may think that the sample point ω ∈ Ω is chosen by the fates and over time the
choice is revealed to us through the values taken by the process Xn. Thus at time n the
σ-algebra Fn contains all those sets which can be resolved, i.e. we know if ω is in them or
not. That is the meaning of adaptness

For a predictable sequence (Xn), you know Xn before the present time n, so it is previsible
and you can certainly predict it!
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Another important concept, stopping times [which are random times], allows us to artic-
ulate the idea of making a decision about when to stop a process based on the observations of
its past behavior. However stopping times have far-reaching applications than its superficial
definition. The concept of stopping times really synthesize many important technical like
random partitions, localizations etc.

Definition 9.3 Let (Fn)n∈Z+
be a filtration on (Ω,F ,P). A measurable function T : Ω →

{0, 1, 2, · · · ,∞} [thus it may take value ∞] is called a stopping time (with respect to (Fn);
if one wishes to emphasize the underlying filtration in question), if {T = n} ∈ Fn for every
n.

A stopping time T is a random variable and{T = ∞} ∈ F . Both finite constant time
T ≡ n and the infinity time T ≡ ∞ are stopping times.

Let F∞ = σ {Fn : n ∈ Z+} ⊂ F . If T is a stopping time, then

{T = ∞} = Ω \
∞
⋃

n=0

{T = n} =
∞
⋂

n=0

{T > n}

belongs to F∞, and for every n

{T ≤ n} =
n
⋂

k=0

{T = k} ∈ Fn

and
{T > n} = {T ≤ n}c ∈ Fn

for every n ∈ Z+.
In the literature prior to the French School establishing the general theory of stochastic

processes, stopping times had been called Markov times (for example, see K. Ito and H. P.
J. McKean: Diffusion Processes and Their sample Paths. Berlin, Springer-Verlag 1965).

Example 9.4 Let (Xn)n∈Z+
be an adapted process on a filtered probability space (Ω,F ,Fn,P),

and B ∈ B(R). Then the first time T at which the process (Xn)n∈Z+
hits B:

T = inf {n ≥ 0 : Xn ∈ B}

is a stopping time with respect to (Fn). More precisely, T is a random variable defined by

T (ω) = inf {n ≥ 0 : Xn(ω) ∈ B} ∀ω ∈ Ω

together with the convention that inf Ø = ∞. Hence

{T = n} =
n−1
⋂

k=0

{Xk ∈ Bc} ∩ {Xn ∈ B} .

Since (Xn) is adapted, therefore {Xk ∈ Bc} ∈ Fk and {Xn ∈ B} ∈ Fn, so that {T = n} ∈
Fn. T is a stopping time, called a hitting time.

Hitting times are essentially the only stopping times we are interested in.
Given a stopping time T on (Ω,Fn,F ,P), the σ-algebra FT representing the information

available up to the random time T is the following σ-algebra

FT = {A ∈ F∞ : s.t. A ∩ {T ≤ n} ∈ Fn ∀n = 0, 1, 2, · · · } .
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Exercise 9.5 If T is a stopping time on (Ω,F ,Fn,P), then FT is a σ-algebra. If T = n is
a constant time, then FT = Fn.

Theorem 9.6 Let (Xn)n∈Z+
be an adapted random sequence on (Ω,Fn,F ,P), and T be a

stopping time with respect to (Fn). Define

XT1{T<∞}(ω) =

{

XT (ω)(ω), if T (ω) < ∞,
0, if T (ω) = ∞.

Then XT1{T<∞} is FT -measurable [In particular XT1{T<∞} is a random variable.]

Proof. Since

{XT1{T<∞} ≤ a} = {XT ≤ a, T < ∞}

=
∞
⋃

k=0

{Xk ≤ a, T = k} ∪ {0 ≤ a, T = ∞}

so
{

XT1{T<∞}

}

∈ FT . For any n ∈ Z

{

XT1{T<∞} ≤ a
}

∩ {T ≤ n} =
n
⋃

k=0

{Xk ≤ a, T = k}

belongs to Fn as {Xk ≤ a} ∩ {T = k} ∈ Fk, k = 0, 1, · · · , n. Therefore
{

XT1{T<∞} ≤ a
}

∈
FT , which completes the proof.

Exercise 9.7 Let (Xn)n∈Z+
be a sequence of independent random variables with identical

distribution:
P(Xn = 1) = p , P(Xn = 0) = 1− p

where 0 < p < 1. Let (Fn) be the filtration generated by (Xn), and

T1 = inf {n ≥ 1 : Xn = 1} ,

Tn+1 = inf {T > Tn : Xn = 1} if n ≥ 1 .

Tn is the time that the n-th time 1 occurs in the sequence. Then each Tn is a stopping time,
and the sequence

T1, T2 − T1, · · · , Tn − Tn−1, · · ·
is a sequence of independent, identically distributed (with a geometric distribution).

We now introduce the definition of a martingale. The word martingale originated in gam-
bling, describing the double-or-quits strategy or part of a horse’s harness. Mathematically
it encapsulates the idea of a fair game. That is, whatever information from the past history
of the game you use in order to determine your betting strategy, your expected return from
playing the game is the same as your current fortune.

Definition 9.8 Let X = (Xn)n∈Z+
be an adapted process on a filtered probability space

(Ω,Fn,F ,P). Suppose each Xn is integrable.
1) X is a martingale, if

E [Xn+1|Fn] = Xn a.s. ∀n ∈ Z+.
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2) X is a super-martingale if

E [Xn+1|Fn] ≤ Xn a.s. ∀n ∈ Z+.

3) X is a sub-martingale if

E [Xn+1|Fn] ≥ Xn a.s. ∀n ∈ Z+.

Exercise 9.9 1) Prove that, an adapted, integrable random sequence (Xn) is a martingale
if and only if

E [Xm|Fn] = Xn a.s. ∀m ≥ n.

State a version of the statement for a super- or sub-martingale.
2) If (Xn) is a martingale, then E [Xn] = E [X0] for any n.
3) If (Xn) is a super-martingale, then n → E [Xn] is decreasing, while n → E [Xn] is

increasing if (Xn) is a sub-martingale.

Example 9.10 In these examples we are given a filtered probability space (Ω,F ,Fn,P).
1) Martingale by projection. Let ξ ∈ L1(Ω,F ,P) be an integrable random variable [i.e.

E [|ξ|] < ∞], and Xn = E [ξ|Fn]. Then (Xn) is a martingale.
2) Random walk. Let (ξn)n∈Z+

be a sequence of adapted and integrable random variables.
Suppose ξn+1 and Fn are independent [i.e. σ {ξn+1} and Fn are independent]. An example is
that {ξn} is a sequence of independent random variables on (Ω,F ,P) and Fn = σ{ξm : m ≤
n}. Let Xn =

∑n

k=0 ξk be the partial sum sequence. Then (Xn) is a martingale if E [ξn] = 0
for any n, is a super-martingale if E [ξn] ≤ 0, and a sub-martingale if E [ξn] ≥ 0 for any n.

3) Likelihood ratios. Let f, g be two probability density functions, with support on the
whole of R. Let (Xn) be a sequence of independent, identically distributed random variables
from the distribution with probability density function f . The likelihood ratio is given by

Rn =
g(X1)g(X2) . . . g(Xn)

f(X1)f(X2) . . . f(Xn)

with R0 = 1. Then (Rn) is a martingale with respect to the filtration generated by X.
4) Polya’s Urn. At time t = 0 an urn contains 1 red and 1 black ball. At each time a ball

is chosen randomly from the urn and it is then replaced along with another ball of the same
color. Thus at the time of the n-th draw there are n+2 balls in the urn and we let Bn be the
number of black balls. Then Mn = Bn/(n + 2) is a martingale with respect to the filtration
generated by Bn.

Example 9.11 [Martingale transform, discrete stochastic integral] If (Hn) is a predictable
process and (Xn) is a martingale, then

(H.X)n =
n
∑

k=1

Hk(Xk −Xk−1), (H.X)0 = 0

is a martingale.

Exercise 9.12 1) If (Xn) and (Yn) are two martingales (resp. super-martingale), so is
(Xn + Yn).

2) Show that (Xn ∧ Yn) is a super-martingale, where (Xn) and (Yn) are two martingales.
In fact, since Zn = min {Xn, Yn} so that

E [Zn+1|Fn] ≤ E [Xn+1|Fn] ≤ Xn
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and also
E [Zn+1|Fn] ≤ E [Yn+1|Fn] ≤ Yn

hence E [Zn+1|Fn] ≤ Zn, thus Z is also a super-martingale.

Recall Jensen’s inequality for conditional expectation: if ϕ : R → R is a convex function,
ξ, ϕ(ξ) ∈ L1(Ω,F ,P), and G is a sub σ-field of F , then

ϕ(E [ξ|G]) ≤ E [ϕ(ξ)|G] .

Functions (t ln t) 1(1,∞)(t), t
+ = t1(0,∞) and |t|p (for p ≥ 1) are examples of convex functions.

Theorem 9.13 1) Let (Xn) be a martingale, and ϕ : R → R be a convex function. Suppose
ϕ(Xn) are integrable for every n. Then {ϕ(Xn)} is a sub-martingale.

2) Let (Xn) be a sub-martingale, and ϕ : R → R be increasing and convex. Suppose
ϕ(Xn) are integrable for every n, then {ϕ(Xn)} is a sub-martingale.

Proof. 1) In fact, applying Jensen’s inequality

ϕ(Xn) = ϕ (E [Xn+1|Fn]) (martingale property)

≤ E [ϕ(Xn+1)|Fn] (Jensen’s inequality).

which proved 1). The proof of 2) is similar.
t+ = max{t, 0} = t1(0,∞) is increasing and convex, thus, if (Xn) is a sub-martingale, so

is X+
n = max {Xn, 0}. If X = (Xn) is a super-martingale, then −Xn is a sub-martingale, so

that X−
n = max{−Xn, 0} is a sub-martingale. That is, the positive part of a sub-martingale

is again a sub-martingale, while the negative part of a super-martingale is however a sub-
martingale. Therefore, if Xn is a martingale, then both its positive part and its negative
part are sub-martingales, so is its absolute value |Xn| = X+

n +X−
n .

10 Martingale inequalities

In this section we prove the fundamental martingale inequalities.
We first establish Doob’s optional sampling theorem which shows that the (super-, sub-

)martingale property holds at bounded stopping times.

Theorem 10.1 [Doob’s optional stopping theorem] Let (Xn) be a martingale (resp. super-
martingale), and S ≤ T two bounded stopping times. Then E [XT |FS] = XS (resp.
E [XT |FS] ≤ XS).

Proof. [The proof is not examinable.] By Theorem 9.6, XT ∈ FT , XS ∈ FS. Suppose S
and T are bounded above by N , then

E [|XT |] =
N
∑

j=0

E
[

|Xj|1{T=j}

]

≤
N
∑

j=0

E [|Xj|] ,

so XT is integrable. Similarly XS is integrable too.
We have to prove that E [XT : A] ≤ E [XS : A] for every A ∈ FS.
Let A ∈ FS. Since S and T are stopping times, A ∩ {S = j} ∈ Fj, {T > j} ∈ Fj for

j = 0, · · · , N − 1, so that

Aj ≡ A ∩ {S = j} ∩ {T > j} ∈ Fj
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and A ∩ {S < T} =
⋃N

j=0Aj is a disjoint decomposition.
1) If 0 ≤ T − S ≤ 1, then XT = Xj+1 and XS = Xj on Aj for j = 0, · · · , N − 1, and

therefore

E [XS −XT : A] = E [XS −XT : A ∩ {S < T}] =
N−1
∑

j=0

E [Xj −Xj+1 : Aj]

However, X is a super-martingale and Aj ∈ Fj, so that E [Xj+1 : Aj] ≤ E [Xj : Aj]. That
is, E [Xj −Xj+1 : Aj] ≥ 0 for j = 0, · · · , N − 1, and therefore E [XS −XT : A] ≥ 0, which is
equivalent to that E [XS : A] ≥ E [XT : A] for every A ∈ FS.

2) In general, let Rj = T ∧ (S + j), j = 1, · · · , n. Then Rj are stopping times, and
S ≤ R1 ≤ · · · ≤ Rn = T . Moreover R1 − S ≤ 1 and Rj+1 − Rj ≤ 1 for 1 ≤ j ≤ N − 1. Let
A ∈ FS. Then A ∈ FRj

as S ≤ Rj. Therefore by applying the first case to Rj we obtain

E [XS : A] ≥ E [XR1 : A] ≥ · · · ≥ E [XT : A]

so that E [1AXS] ≥ E [1AXT ]. The proof is complete.
Let us first deduce several easy but important consequences from Doob’s optional stop-

ping theorem.

Corollary 10.2 Let X = (Xn) be a super-martingale.
1) If T ≥ S are two bounded stopping times, then E [XT ] ≤ E [XS].
2) If T is a stopping time, then E [XT∧n] ≤ E [XT∧m] for any n ≥ m, where XT∧n = XT

on {T ≤ n} and XT∧n = Xn on {T > n}.
Similar conclusions hold for sub-martingales.

Corollary 10.3 If X = (Xn) is a super-martingale, and T is a stopping time, then

E [|XT∧n|] ≤ E [X0] + 2E
[

X−
n

]

∀n ∈ Z+.

If in addition supn E [|Xn|] < ∞, then

E
[

|XT |1{T<∞}

]

≤ 3 sup
n

E [|Xn|] .

Proof. According to Theorem 10.1, since (X−
n ) is a sub-martingale, together the follow-

ing equality
|XT∧n| = X+

T∧n +X−
T∧n = XT∧n + 2X−

T∧n

we have

E [|XT∧n|] = E [XT∧n] + 2E
[

X−
T∧n

]

≤ E [X0] + 2E
[

X−
n

]

which is the first inequality. It follows that

E
[

|XT∧n|1{T<∞}

]

≤ 3 sup
n

E [|Xn|] (10.1)

for every n. Since
|XT |1{T<∞} = lim

n→∞
|XT∧n|1{T<∞}
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and applying Fatou’s lemma to |XT∧n|1{T<∞}, we obtain

By :

E
[

|XT |1{T<∞}

]

= E

[

lim
n→∞

|XT |1{T<∞}

]

≤ lim inf
n→∞

E
[

|XT∧n|1{T<∞}

]

≤ 3 sup
n

E [|Xn|]

where the last inequality follows from (10.1).

Theorem 10.4 (Stopped super-martingales are super-martingales) Suppose X = (Xn) is a
super-martingale, and suppose T is a stopping time, then the stopped process XT = (XT∧n)
is again a super-martingale. A similar result holds for martingales and sub-martingales.

Proof. According to the previous corollary, we know that XT∧n is integrable for every
n∈ Z. For n ≥ m we have

E [XT∧n|Fm] =
n
∑

k=0

E
[

Xk1{T=k}|Fm

]

+ E
[

XT∧n1{T>m}|Fm

]

=
m
∑

k=0

Xk1{T=k} + E
[

XT∧n1{T>m}|Fm

]

=
m
∑

k=0

Xk1{T=k} + 1{T>m}E
[

XT∧n1{T>m}|Fm

]

. (10.2)

where we have used the fact that {T > m} ∈ Fm. Let S = T1{T>m} +∞1{T≤m}. Then S is
a stopping time. In fact, if k ≤ m, then {S = k} = Ø, and if k > m, then

{S = k} = {T = k} ∩ {T > m} ∈ Fk

as {T > m} ∈ Fm ⊆ Fk. By definition S ∧ n ≥ m, and

XS∧n = XT∧n1{T>m} +Xn1{T≤m}.

Hence, by applying Doob’s stoping theorem to X and bounded stopping times S ∧ n ≥ m
we obtain

E [XS∧n|Fm] ≤ Xm

that is
E
[

XT∧n1{T>m} +Xn1{T≤m}|Fm

]

≤ Xm.

Since {T ≤ m} ∈ Fm, it follows that

E
[

XT∧n1{T>m}|Fm

]

+ 1{T≤m}E [Xn|Fm] ≤ Xm.

Thus, by multiplying both sides by 1{T>m}, we have

1{T>m}E
[

XT∧n1{T>m}|Fm

]

≤ Xm1{T>m}. (10.3)

Putting together (10.2) with (10.3) we obtain that

E [XT∧n|Fm] ≤
m
∑

k=0

Xk1{T=k} +Xm1{T>m} = XT∧m

which means that XT is again a super-martingale.
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Corollary 10.5 Let T be a finite stopping time.
1) If X = (Xn) is a non-negative super-martingale, then E [XT ] ≤ E [X0].
2) If X = (Xn) is a super-martingale, and there is an integrable random variable ξ such

that |Xn| ≤ ξ almost everywhere on Ω for all n, then E [XT ] ≤ E [X0].

Proof. 1) In fact, since T is finite, XT∧n → XT as n → ∞. By Fatou’s lemma we have

E [XT ] ≤ lim inf
n→∞

E [XT∧n] ≤ E [X0]

which completes the proof.
2) This time we apply the Dominated Convergence Theorem to {XT∧n} to obtain E [XT ] =

limn→∞ E [XT∧n].

Corollary 10.6 Let T be a finite stopping time, and X = (Xn) be a super-martingale. Let
ξ = supn=1,2,··· |Xn−Xn−1|. Suppose ξT is integrable, i.e. E [ξT ] < ∞, then E [XT ] ≤ E [X0].
In particular, if the sequence |Xn −Xn−1| ≤ L for every n, where L is a constant, and if T
is an integrable stopping time, then E [XT ] ≤ E [X0].

Proof. For every n, we have

|XT∧n| =
∣

∣

∣

∣

∣

X0 +
n∧T
∑

k=1

(Xk −Xk−1)

∣

∣

∣

∣

∣

≤ |X0|+ ξT.

Since |X0|+ ξT is integrable, and XT∧n → X0 almost everywhere, by Lebesgue’s Dominated
Convergence Theorem, E [XT ] = limn→∞ E [XT∧n] which yields the conclusion.

In order to establish a general result such as 2) in Corollary 10.5, the concept of uniform
integrability may be useful. For example, we have the following

Corollary 10.7 Let T be a finite stopping time, and X = (Xn) be a super-martingale.
Suppose {XT∧n : n = 0, 1, 2, · · · } is uniformly integrable, then E [XT ] ≤ E [X0].

The proof is eacatly the same as that of 2), Corollary 10.5. In fact, since XT∧n → XT

and {XT∧n} is uniformly integrable, by Theorem 8.4, E [XT ] = limn→∞ E [XT∧n].
It is therefore useful to introduce the following definition.

Definition 10.8 Let X = (Xn)n∈Z+ be an adapted sequence of real random variables on a
filtred probability space (Ω,F ,Fn,P). Let T denote the collection of all finite (Fn)-stopping
times. Then we say X = (Xn) is of class D, if the family {XT : T ∈ T } is uniformly
integrable.

Next we derive the main martingale inequalities, as applications of Doob’s optional stop-
ping theorem. Let us introduce a notation first.

If (Xn)n∈Z+ is a sequence of real random variables on (Ω,F ,P), for each n ∈ Z+, set
X∗

n(ω) = maxk≤nXk(ω) for ω ∈ Ω. Then (X∗
n) is called the sequence of running maximal of

(Xn). It is obvious that each X∗
n is a random variable. If (Xn)n∈Z+ is an adapted sequence

on the filtered space (Ω,F ,Fn,P), then so is its running maximal.
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Theorem 10.9 [Doob’s maximal inequality] 1) If Y = (Yn) is a sub-martingale, then

P [Y ∗
n ≥ λ] ≤ 1

λ
E [Yn : Y ∗

n ≥ λ] (10.4)

for any λ > 0. Since |Yn| is also a sub-martingale, so that

P

[

sup
k≤n

|Yk| ≥ λ

]

≤ 1

λ
E

[

|Yn| : sup
k≤n

|Yk| ≥ λ

]

.

2) If X = (Xn) is a super-martingale, then

P [X∗
n ≥ λ] ≤ 1

λ
(E [X0]− E [Xn : X∗

n ≤ λ])

for any λ > 0, n ∈ Z+, and

P

[

sup
k≤n

|Xk| ≥ λ

]

≤ 1

λ

(

E [X0] + 2E
[

X−
n

])

(10.5)

for all λ > 0, where X−
n = max {0,−Xn} which is a sub-martingale.

Proof. [The proof is not examinable.] We give two proofs of 1). LetR = inf {k ≥ 0 : Yk ≥ λ}
and T = R ∧ n. Then T ≤ n, and we have the following facts: YR ≥ λ on {R < ∞},
{Y ∗

n ≥ λ} ⊆ {YT ≥ λ} and {Y ∗
n < λ} ⊂ {T = n}. Apply Doob’s stopping theorem to n ≥ T

to obtain

E [Yn] ≥ E [YT ] = E [YT : Y ∗
n ≥ λ] + E [YT : Y ∗

n < λ]

≥ λP [Y ∗
n ≥ λ] + E [Yn : Y ∗

n < λ] .

Rearrange the inequality to deduce that

P [Y ∗
n ≥ λ] ≤ 1

λ
E [Yn : Y ∗

n ≥ λ] .

Here is a proof without using the notion of stopping times but partition techniques. Let
Ej = {Yk < λ for k ≤ j − 1, Yj ≥ λ} where j = 0, 1, · · · , n. Then {Y ∗

n ≥ λ} = ∪jEj, Ej are
disjoint, and Ej ⊆ Fj. Therefore

P [Y ∗
n ≥ λ] =

n
∑

j=0

P [Ej] ≤
n
∑

j=0

1

λ
E [Yj : Ej]

≤
n
∑

j=0

1

λ
E [Yn : Ej] =

1

λ
E [Yn : Y ∗

n ≥ λ] .

2) Let R = inf {k ≥ 0 : Xk ≥ λ} and T = R ∧ n. Applying Doob’s optional theorem to
stopping times T and S = 0, one has

E [X0] ≥ E [XT ] = E [XT : X∗
n ≥ λ] + E [XT : X∗

n < λ]

≥ λP

[

sup
k≤n

Xk ≥ λ

]

+ E [Xn : X∗
n < λ] .
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To prove the last estimate, we combine 1) with the first inequality of 2). Since X = (Xn)
is a super-martingale, applying 1) to the sub-martingale (−Xn) we have

P

[

inf
k≤n

Xk ≤ −λ

]

= P

[

sup
k≤n

(−Xk) ≥ λ

]

≤ 1

λ
E

[

−Xn : inf
k≤n

Xk ≤ −λ

]

together with the first inequality of 2) we deduce that

P

[

sup
k≤n

|Xk| ≥ λ

]

= P

[

sup
k≤n

Xk ≥ λ, or inf
k≤n

Xk ≤ −λ

]

≤ P

[

sup
k≤n

Xk ≥ λ

]

+ P

[

inf
k≤n

Xk ≤ −λ

]

≤ 1

λ
E [X0]−

1

λ
E [Xn : X∗

n ≤ λ] +
1

λ
E

[

−Xn : inf
k≤n

Xk ≤ −λ

]

≤ 1

λ

(

E [X0] + 2E
[

X−
n

])

which is the last inequality.
The following result plays a key role in proving the strong law of large numbers, which a

strong version of the elementary Markov inequality.

Theorem 10.10 [Kolmogorov’s inequality] Let (Xn) be a martingale and XN ∈ L2(Ω,F ,P)
where N is a positive integer. Then for any λ > 0

P

[

sup
k≤N

|Xk| ≥ λ

]

≤ 1

λ2
E
[

X2
N

]

. (10.6)

Proof. By Jensen’s inequality, for any k ≤ N

E
[

X2
k

]

= E (E [XN |Fk])
2 ≤ E

[

X2
N

]

< ∞.

[That is (Xn) is a square-integrable martingale up to N ]. Therefore (X2
k) (k = 0, 1, · · · , N)

is a sub-martingale (up to time N). Applying Doob’s maximal inequality one obtains

P

[

sup
k≤n

X2
k ≥ λ2

]

≤ 1

λ2
E

[

X2
n : sup

k≤n

X2
k ≥ λ2

]

≤ 1

λ2
E
[

X2
n

]

for all n ≤ N .

Example 10.11 Let (Xn) be independent and square integrable. Then Sn =
∑n

k=0(Xk−µk)
where µk = E [Xk] is a martingale. Moreover

E
[

S2
n

]

= E

[

n
∑

k=0

(Xk − µk)

]2

=
n
∑

k=0

σ2
k

where σ2
k = var(Xk). According to Kolmogorov’s inequality

P

[

sup
k≤n

∣

∣

∣

∣

∣

k
∑

l=0

(Xl − µl)

∣

∣

∣

∣

∣

≥ λ

]

≤ 1

λ2

n
∑

k=0

σ2
k

for any λ > 0.
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Doob’s maximal inequality is a tail estimate for the distribution of the running maximum
of a martingale, thus can be used to estimate the Lp-norm, which is the context of Doob’s
Lp-inequality.

Let us begin with an elementary lemma which follows from Fubini’s theorem directly.

Lemma 10.12 Suppose ρ is right-continuous, increasing on (0,∞) and ρ(0+) = 0, and ξ
is a non-negative random variable on (Ω,F ,P), then

ρ (ξ) = ρ (ξ)− ρ (0+) =

ˆ

(0,ξ]

mρ(dλ) on {ξ > 0}

E [ρ(ξ) : ξ > 0] = E

[
ˆ

(0,ξ]

mρ(dλ) : ξ > 0

]

= E

[
ˆ

(0,∞)

1{λ≤ξ}mρ(dλ)

]

=

ˆ

Ω×(0,∞)

1{ξ≥λ}mρ(dλ)dP =

ˆ

(0,∞)

P [ξ ≥ λ]µρ(dλ),

where mρ(dλ) is the Lebesgue-Stieltjes measure defined by ρ on (0,∞), so that mρ((s, t]) =
ρ(t)− ρ(s) for any t ≥ s ≥ 0.

Theorem 10.13 [Doob’s Lp-inequality] 1) If (Xn) is a non-negative sub-martingale, then,
for any p > 1

E [|X∗
n|p] ≤

(

p

p− 1

)p

E [|Xn|p] . (10.7)

2) If (Xn) is a martingale, then, for any p > 1,

E

[

max
k≤n

|Xk|p
]

≤
(

p

p− 1

)p

E [|Xn|p] (10.8)

The last inequality may be reformulated in terms of the Lp-norm as

‖X∗
n‖p ≤ q ‖Xn‖p

where 1
p
+ 1

q
= 1, ‖·‖p denotes the Lp-norm, and X∗

n = maxk≤nXk is the running maximum.

Proof. If (Xn) is a martingale, then (|Xn|) is a sub-martingale, so (10.8) follows from
(10.7). Let us prove the first conclusion. According to Doob’s maximal inequality (10.4),

P [X∗
n ≥ λ] ≤ 1

λ
E [Xn;X

∗
n ≥ λ] .

If ρ is right continuous, increasing and ρ(0+) = 0 on (0,∞), then, by Lemma 10.12

E [ρ(X∗
n) : X

∗
n > 0] = E

[
ˆ

(0,X∗

n)

mρ(dλ) : X
∗
n > 0

]

=

ˆ

(0,∞)

P [X∗
n ≥ λ]mρ(dλ)

≤
ˆ

(0,∞)

1

λ
E [Xn : X∗

n ≥ λ]mρ(dλ)

=

ˆ

(0,∞)

{

1

λ

ˆ

{X∗

n≥λ}

XndP

}

mρ(dλ)

= E

[

Xn

(
ˆ

(0,X∗

n]

1

λ
mρ(dλ)

)

: X∗
n > 0

]

.
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Choosing ρ(λ) = λp, then ρ′(λ) = pλp−1, we obtain

E [|X∗
n|p] = E [|X∗

n|p : X∗
n > 0] ≤ E

[

Xn

(
ˆ

(0,X∗

n]

1

λ
mρ(dλ)

)

: X∗
n > 0

]

=
p

p− 1
E
[

Xn (X
∗
n)

p−1]

≤ q(E|Xn|p)
1
p (E|X∗

n|p)
1
q

for 1
p
+ 1

q
= 1, here the last inequality we have used the Holder inequality

ˆ

Ω

|fg|dµ ≤ ‖f‖p ‖g‖q

if p > 1 and 1
p
+ 1

q
= 1. Rearranging the inequality above to obtain the last inequality in 2).

Doob’s Lp-inequality does not apply to the case p = 1, as in this case q = ∞ which gives
the infinity upper bound. That is to say, the L1-norm of the terminal value of a martingale
does not in general control the L1-norm of its running maximal.

Exercise 10.14 Prove that log x ≤ x/e for all x > 0, hence prove that

a log+ b ≤ a log+ a+
b

e
. (10.9)

Consider h(t) = log t − t
e
for t > 0. Then h(t) → −∞ as t ↓ 0 or t ↑ ∞, so h achieves

its maximum in (0,∞). Since h′(t) = 1
t
− 1

e
has unique root t = e, e is the maximum of h.

Therefore h(t) ≤ h(e) = 0 for all t > 0, that is, log t ≤ t
e
.

Now

log+(at) = max{0, log(at)} = max{0, log a+ log t}

≤ max

{

0, log+ a+
t

e

}

= log+ a+
t

e
,

Setting t = b
a
we obtain the inequality (10.9).

Theorem 10.15 If (Xn) is a non-negative sub-martingale, then

E

[

max
k≤n

Xk

]

≤ e

e− 1

(

1 + E
[

Xn log
+ Xn

])

. (10.10)

Proof. [The proof is not examinable.] We have seen from the proof of Doob’s Lp-
inequality

E [ρ(X∗
n) : X

∗
n > 0] ≤ E

[

Xn

ˆ

(0,X∗

n]

1

λ
mρ(dλ) : X

∗
n > 0

]

.

where now ρ(λ) = (λ−1)+ which is a continuous increasing function with support on [1,∞).
Therefore

E [ρ(X∗
n)] = E [ρ(X∗

n) : X
∗
n > 0] ≤ E

[

Xn

ˆ X∗

n

1

1

λ
dλ : X∗

n ≥ 1

]

= E
[

Xn log
+X∗

n

]

≤ E
[

Xn log
+Xn

]

+
1

e
E [X∗

n] .
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where we have used the inequality

Xn logX
∗
n ≤ Xn log

+Xn +
X∗

n

e
.

On the other hand

E [X∗
n] = E

[

X∗
n1{X∗

n≥1}

]

+ E
[

X∗
n1{X∗

n<1}

]

≤ E
[

ρ(X∗
n)1{X∗

n≥1}

]

+ E
[

1{X∗

n>1}

]

+ E
[

X∗
n1{X∗

n<1}

]

≤ E [ρ(X∗
n)] + 1.

Together with the previous estimate one thus deduces that

E [X∗
n] ≤ 1 + E

[

Xn log
+Xn

]

+
E [X∗

n]

e

which yields the L1-estimate.

11 The martingale convergence theorem

An important field in the probability theory is to study the asymptotic behavior of sequences
of random variables. For example, we are interested in whether a sequence {Xn : n ≥ 0}
converges or not as n → ∞. One of the powerful tools to study the convergence of random
sequences is the concept of up-crossing numbers through intervals by a random sequence.

Suppose (an) is a sequence of real numbers, then limn→∞ an exists (as a real number),
limn→∞ an = ∞ or limn→∞ an = −∞, if and only if lim inf an = lim sup an. Therefore, if
(Xn) is a random sequence of real randon variables, then

lim
n→∞

an exists in [−∞,∞] if and only if lim inf
n→∞

an = lim sup
n→∞

an.

Moreover, by definition, there are two sub-sequences nk and mk such that

lim
k→∞

ank
= lim inf

n→∞
an and lim

l→∞
aml

= lim sup
n→∞

an

where we can choose two subsequences such that

n0 < m0 < n1 < m1 < · · · < nk < mk < · · ·

In the case that lim infn→∞ an < lim supn→∞ an, then we can choose a < b such that

lim inf
n→∞

an < a < b < lim sup
n→∞

an

(and we can demand that a < b to be rational numbers). Then, by looking the sequence
(an) along an0 , am0 , · · · , ank

, amk
, · · · , we can see that the sequence (an) must cross from low

level a to upper level b infinitely many times. That is, the number of up-crossing (a, b) by
(an) is infinite. Hencelimn→∞ an exists in [−∞,∞] if and only if the up-crossing number by
(an) through any (a, b) (for every pair a < b of rational numbers) is finte.

Apply this to a sequence (Xn) of real random variables,

{

lim
n→∞

Xn exists in [−∞,∞]
}

= {the up-corssing number of (Xn) through (a, b) < ∞ for any rationals
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Let X = (Xn)n≥0 be a sequence of real valued random variables, and a < b be two
numbers. An up-crossing is the event that the sequence Xn is below a at some n and then
Xm ≥ b for some m > n, and similarly we may define a down-crossing. Let us concentrate
on up-crossing events.

Define

T0 = inf {n ≥ 0 : Xn ≤ a} ,
T1 = inf {n > T0 : Xn ≥ b} ,

· · · · · ·
T2j = inf {n > T2j−1 : Xn ≤ a} ,

T2j+1 = inf {n > T2j : Xn ≥ b} ,
· · ·

T0 is the first time that the sequence X goes to the level below a, and T1 is the first time X
goes back to the level b after reaching the level below a and so on. All Tk are random times
but can take value ∞, and {Tk} is increasing. Moreover

XT2j
≤ a on {T2j < ∞} ,

XT2j+1
≥ b on {T2j+1 < ∞} .

If T2j−1(ω) < ∞ for some j ∈ N, then the sequence

X0(ω), · · · , XT2j−1
(ω)

up-crosses the interval [a, b] exactly j times.
Let U b

a(X;n) denote the number of up-crossings of the interval [a, b] by {X0, · · · , Xn}.
Then

{

U b
a(X;n) = j

}

= {T2j−1 ≤ n < T2j+1} (11.1)

and
{

U b
a(X;n) ≥ j

}

= {T2j−1 ≤ n} (11.2)

for j = 0, 1, · · · .
If X = (Xn)n≥0 is adapted with respect to a filtration {Fn : n ≥ 0}, then Tk are stopping

times. Hence
{

U b
a(X;n) = j

}

∈ Fn for any n ∈ Z+ and j ∈ Z̄+.

Lemma 11.1 For any b > a and n, k ∈ N we have

1{Ub
a(X;n)≥k} ≤ −Xn − a

b− a
1{T2(k−1)≤n<T2k−1} +

XT2k−1∧n −XT2(k−1)∧n

b− a
(11.3)

and

1{Ub
a(X;n)≥k} ≤ Xn − a

b− a
1{Ub

a(X;n)=k} +
XT2k−1∧n −XT2k∧n

b− a
. (11.4)

Proof. [The proof is not examinable] For every k = 1, 2, · · · , T2(k−1) < T2k−1 < T2k

on {T2k−1 < ∞}. Let us consider the increments of X = (Xn) over [T2(k−1), T2k−1] and
[T2k−1, T2k] respectively, which must be greater than b − a on {T2k−1 < ∞} (resp. on
{T2k < ∞}).
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It is elementary that

XT2k−1∧n −XT2(k−1)∧n =
(

XT2k−1∧n −XT2(k−1)

)

1{T2(k−1)≤n}
=

(

XT2k−1
−XT2(k−1)

)

1{T2(k−1)≤n}1{T2k−1≤n}

+
(

Xn −XT2(k−1)

)

1{T2(k−1)≤n}1{T2k−1>n}

=
(

XT2k−1
−XT2(k−1)

)

1{T2k−1≤n}

+
(

Xn −XT2(k−1)

)

1{T2(k−1)≤n<T2k−1}.

Since XT2k−1
−XT2(k−1)

≥ b − a on {T2k−1 < ∞}, XT2(k−1)
≤ a on

{

T2(k−1) < ∞
}

, and since

{T2k−1 ≤ n} =
{

U b
a(X;n) ≥ k

}

, we deduce frome the previous identity that

XT2k−1∧n −XT2(k−1)∧n ≥ (b− a)1{Ub
a(X;n)≥k} + (Xn − a) 1{T2(k−1)≤n<T2k−1}

and (11.3) follows. Similarly, one may use the decomposition

XT2k−1∧n −XT2k∧n =
(

XT2k−1
−XT2k

)

1{T2k≤n} +
(

XT2k−1
−Xn

)

1{T2k−1≤n<T2k}

≥ (b− a) 1{T2k≤n} + (b−Xn) 1{T2k−1≤n<T2k}

= (b− a)
(

1{T2k≤n} + 1{T2k−1≤n<T2k}

)

+ (a−Xn) 1{T2k−1≤n<T2k}

= (b− a) 1{T2k−1≤n} + (a−Xn) 1{T2k−1≤n<T2k}

where we have used the fact that XT2k−1
≥ b on {T2k−1 < ∞}, which yields that

1{T2k−1≤n} ≤ −a−Xn

b− a
1{T2k−1≤n<T2k} +

XT2k−1∧n −XT2k∧n

b− a
.

Theorem 11.2 (Doob’s up-crossing lemma) 1) If X = (Xn) is a super-martingale, then
for any n ≥ 1, k ≥ 0

P
[

U b
a(X;n) ≥ k

]

≤ E

[

(Xn − a)−

b− a
: U b

a(X;n) = k

]

and

E
[

U b
a(X;n)

]

≤ E

[

(Xn − a)−

b− a

]

.

[Note that Xn − a is also a super-martingale for any constant a, so that (Xn − a)− is a
sub-martingale.]

2) Similarly, if X = (Xn) is a sub-martingale, then

P
[

U b
a(X;n) ≥ k

]

≤ E

[

(Xn − a)+

b− a
: U b

a(X;n) = k

]

and

E
[

U b
a(X;n)

]

≤ E

[

(Xn − a)+

b− a

]

.

[For a sub-martingale, (Xn − a)+ is again a sub-martingale for every constant a.]
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Proof. [The proof is not examinable] 1) Suppose X is a super-martingale, according to
Doob’s optional stopping theorem

E

[

XT2k−1∧n −XT2(k−1)∧n

]

≤ 0, (11.5)

so that it follows from (11.3) that

P
{

U b
a(X;n) ≥ k

}

≤ −E

{

Xn − a

b− a
1{Ub

a(X;n)=k}
}

+ E

(

XT2k−1∧n −XT2(k−1)∧n

)

≤ −E

{

Xn − a

b− a
1{Ub

a(X;n)=k}
}

which proves the first inequality. Since U b
a(X,n) takes values in Z+ so that

EU b
a(X,n) =

∞
∑

k=1

kP
{

U b
a(X;n) = k

}

=
∞
∑

k=1

P
{

U b
a(X;n) ≥ k

}

=
∞
∑

k=1

E

{

(Xn − a)−

b− a
: U b

a(X;n) = k

}

≤ E

{

(Xn − a)−

b− a

}

.

2) If X is a sub-martingale, then E
(

XT2k−1∧n −XT2k∧n

)

≤ 0, so that, by (11.4) we obtain

P
{

U b
a(X;n) ≥ k

}

≤ E

{

Xn − a

b− a
1{Ub

a(X;n)=k}
}

.

Theorem 11.3 (The martingale convergence theorem, J. L. Doob) 1) Suppose X = (Xn)
is a super-martingale, such that supn E [|Xn|] < ∞ (i.e. (Xn) is bounded in L1(Ω)), then
X∞ = limn→∞ Xn exists almost surely and X∞ ∈ L1(Ω). If in addition X = (Xn) is
non-negative, then E [X∞|Fn] ≤ Xn for n ≥ 0.

2) If X = (Xn) is uniformly integrable martingale, then X∞ = limn→∞Xn exists almost
surely and in L1(Ω), and Xn = E [X∞|Fn] for every n.

Proof. [The proof is not examinable] For any pair of rationales a, b ∈ Q with a < b,
U b
a(X) = limn→∞ U b

a(X;n) is the total number of up-crossings of the interval (a, b) ever made
by (Xn). By MCT and Doob’s crossing lemma we have

E
[

U b
a(X)

]

= lim
n→∞

E
[

U b
a(X;n)

]

≤ sup
n

E

[

(Xn − a)−

b− a

]

≤ |a|
b− a

+
1

b− a
sup
n

E [|Xn|] < ∞.

That is, U b
a(X) is integrable, so is finite almost surely. Let

W(a,b) = {liminfn→∞Xn < a, limsupn→∞Xn > b}

and W = ∪(a,b)W(a,b), where the union runs through the countable set of rational pairs
(a, b), a < b. It is easy to verify, by definition of limits, that W(a,b) ⊂

{

U b
a(X) = ∞

}

, so
that P

[

W(a,b)

]

= 0. Hence P(W ) = 0. However if ω /∈ W , then limn→∞ Xn(ω) exists, and
we denote it by X∞(ω) and on W we set X∞(ω) = 0. Then Xn → X∞ on W c. Thus
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Xn → X∞ almost surely. According to Fatou’s lemma, E|X∞| ≤ supn E|Xn| < ∞, so that
X∞ ∈ L1(Ω,F ,P).

If in addition {Xn} is non-negative, since E [Xm|Fn] ≤ Xn for m ≥ n, letting m → ∞,
Fatou’s lemma then yields that E [X∞|Fn] ≤ Xn, the proof is thus complete.

If however X = (Xn) is uniformly integrable martingale, then we also have Xn → X∞

in L1. Since for every m > n we have E [Xm|Fn] = Xn, by letting m → ∞ to obtain
Xn = E [X∞|Fn].

Corollary 11.4 (Levy’s “Upward” theorem) Let ξ ∈ L1(Ω) and Xn = E [ξ|Fn]. Then X =
(Xn) is a uniformly integrable martingale, and limn→∞Xn = E [ξ|F∞] almost everywhere,
where F∞ = σ {Fj : j ≥ 0}.

Proof. By considering ξ+ and ξ− instead, we may assume that ξ is non-negative without
losing generality. Since ξ ∈ L1(Ω), X = (Xn) is a uniformly integrable martingale. Thus
limn→∞ Xn = X∞ exists a.e. and X∞ is non-negative. By definition X∞ is F∞-measurable.
Let C = ∪∞

j=0Fj. Then, for every A ∈ C we have E(1AX∞) = E(1Aξ) , and F∞ is the
smallest σ-algebra containing C. Consider the collection G of all subsets A in F such that
E(1AX∞) = E(1Aξ). Then, since X∞and ξ are non-negative and integrable, the monotone
convergence theorem implies that G is a σ-algebra containing C. Therefore G ⊃ F∞, thus we
must have X∞ = E [ξ|F∞].

Corollary 11.5 (Kolmogorov’s 0-1 law) Let ξn (n = 1, 2, · · · ) be a sequence of independent
random variables on (Ω,F ,P), Gn = σ{ξj : j ≥ n + 1} and G∞ = ∩∞

n=0Gn. Any element in
G∞is called a tail event. If A ∈ G∞, then P(A) = 0 or 1. Thus any G∞-measurable random
variable is constant almost surely.

Proof. Let Fn = σ {ξj : j ≤ n}. Then, for every n, Fn and Gn are independent. Hence
Fn and G∞ are independent for any n. Let ξ = 1A where A ∈ G∞, and let Xn = E [ξ|Fn].
Then X = (Xn) is a uniformly integrable martingale, and Xn → E [ξ|F∞] = 1A. On the
other hand, since ξ and Fn are independent, so that Xn = E [ξ|Fn] = E [ξ] = P(A) almost
everywhere. Therefore P(A) = 1A almost surely, so that P(A) = 0 or 1.

12 The strong law of large numbers

Let (Ω,F ,P) be a probability space, instead of a filtration, we are given a decreasing family
of sub σ-algebras (Gn)n≥0, where Gn+1 ⊆ Gn for n = 0, 1, 2, · · · , where the largest σ-algebra
is the initial one G0 ⊂ F . The final σ-algebra is G∞ = limn→∞ Gn =

⋂∞
j=0 Gj .

We may define martingales, sub-martingales and super-martingales with respect to the
decreasing flow (Gn). Namely, a (Gn)-adapted and integrable random sequence X = (Xn)n≥0

is a martingale (resp. super-martingale, and resp. sub-martingale) if E [Xn|Gn+1] = Xn+1

(resp. E [Xn|Gn+1] ≤ Xn+1, and resp. E [Xn|Gn+1] ≥ Xn+1).
If we set Fn = G−n where n = · · · ,−2,−1, 0 (with the natural order in Z−), then

(Fn) (where n = · · · ,−2,−1, 0) is a filtration, i.e. an increasing flow of σ-algebras. Then
Mn = X−n (where n = · · · ,−2,−1, 0) is martingale (resp. super-martingale, resp. sub-
martingale) if E [Mn|Fn−1] = Mn−1 (resp. E [Mn|Fn−1] ≤ Mn−1, resp. E [Mn|Fn−1] ≥ Mn−1

) for n = · · · ,−2,−1, 0. The following technical lemma allows us apply the results we
have established in the previous sections to martingales with respect to a decreasing flow of
σalgebras, which follows directly from the definition.
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Lemma 12.1 Let (Ω,F ,P) be a probability space together with a decreasing family (Gn)n≥0

of sub σ-algebras of F . Let X = (Xn)n≥0, where Xn ∈ L1(Ω,Gn,P) for n = 0, 1, 2, · · · .
Then, X is martingale (resp. super-martingale, resp. sub-martingale), if and only if for
every N = 1, 2, · · · , the time-reversed random sequence Yn = XN−n (where n = 0, · · · , N)
is a martingale (resp. super-martingale, resp. sub-martingale) up to time N (with terminal
value X0), with respect to the filtration GN−n .

As a sample of applications of the previous lemma, we prove the following very useful
convergence result.

Theorem 12.2 Let (Ω,F ,P) be a probability space together with a decreasing family (Gn)n≥0

of sub σ-algebras of F . If X = (Xn)n≥0 is a super-martingale with respect to (Gn), then
X∞ = limn→∞Xn exists almost surely. If in addition limn→∞ E [Xn] < ∞ then {Xn : n ≥ 0}
is uniformly integrable, and Xn → X∞ in L1(Ω).

Proof. [The proof is not examinable.] For every N = 1, 2, · · · , the time-reversed se-
quence {XN , XN−1, · · · , X0} is a super-martingale (up to time N) with respect to GN−n, its
up-crossing number through [a, b] where a < b is denoted by U b

a(X,−N). The label − is
used to indicate the reversed up-crossing, rather than U b

a(X,N) which is the up-crossing
of {X0, X1, · · · , XN}, but they are equally useful in determining the convergence. Let
U b
a(X) = limN→∞ U b

a(X,−N) which represents the number of up-crossings for the time-
reversed sequence {· · · , XN , XN−1, · · · , X0}. According to Doob’s up-crossing lemma, for
every N ,

E
[

U b
a(X;−N)

]

≤ E

[

(X0 − a)−

b− a

]

.

The right-hand side is independent ofN , so by applying the Monotone Convergence Theorem,
we have

E
[

U b
a(X)

]

≤ E

[

(X0 − a)−

b− a

]

.

Therefore U b
a(X) is integrable, so that U b

a(X) < ∞ almost everywhere. A similar argument
as the proof of the Martingale Convergence Theorem may apply to conclude that X∞ =
limn→∞ Xn exists almost everywhere, and X∞ is

⋂∞
j=1 Gj-measurable.

Since n → E [Xn] is increasing (note that not decreasing, as it is a time-reversed super-
martingale), so that supn E [Xn] = limn→∞ E [Xn]. Suppose that limn→∞ E [Xn] < ∞. Then
supn E [Xn] < ∞. Since X0 is integrable, ξn = E [X0|Gn] is uniformly integrable (time-
reversed) martingale, and Qn = Xn − ξn is (time-reversed) super-martingale. Since

Qn = E [Qn|Gn] = E [Xn −X0|Gn] ≥ 0

which implies that Qn is non-negative, and Xn = Qn + ξn. Therefore, to show that X is
uniformly integrable, we only need to show that Q = (Qn) is uniformly integrable. Thus,
without losing generality, we may assume that X = (Xn) is a non-negative (time-reversed)
super-martingale, and supn E [Xn] = limn→∞ E [Xn] < ∞.

According to the time-reversed super-martingale property, for any n > m ≥ 0 and L > 0,
since {Xn ≤ L} ∈ Gn we have

E [Xn : Xn > L] = E [Xn]− E [Xn : Xn ≤ L] ≤ EXn − E [Xm : Xn ≤ L]

≤ E [Xn]− E [Xm] + E [Xm : Xn > L] .
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Since limn↑∞ E [Xn] exists, so for every ε > 0, there is N1 such that 0 ≤ E [Xn]−E [Xm] <
ε
2
for all n,m ≥ N1. Since the finite family of integrable random variables{X0, · · · , XN1} is

uniformly integrable, so there is δ > 0 such that E [Xm : A] < ε/2 for any A with P(A) <
δ, for all m ≤ N1. On the other hand, using Markov inequality P [Xn > L] ≤ supn EXn

L
.

Choose L0 = supn EXn

δ
. Then P [Xn > L] < δ for all L ≥ L0 and for all n. Therefore

E [Xm : Xn > L] < ε
2
for all m ≤ N1 and L ≥ L1, and

E [Xn : Xn > L] ≤ EXn − EXN1 + E [XN1 : Xn > L] < ε

for all L ≥ L0 and n ≥ N1. Putting all these estimates together we deduce that

E [Xn : Xn > L] < ε

for all n and L ≥ L0, which proves that (Xn) is uniformly integrable. Hence Xn → X∞ in
L1(Ω) as well.

Corollary 12.3 (Levy’s “Downward” theorem) Let (Ω,F ,P) be a probability space together
with a decreasing family (Gn)n≥0 of sub σalgebras of F . Let ξ ∈ L1(Ω) and X = (Xn)n≥0,

where Xn = E [ξ|Gn] for n = 0, 1, 2, · · · . Then, Xn → X∞ = E

[

ξ|⋂∞
j=0 Gj

]

.

This follows from the previous theorem, as X = (Xn) is a uniformly integrable (time-
reversed) martingale.

We are now in a position to prove the strong law of large numbers for i.i.d. sequences.
We collect a few elementary facts about independent sequences in the following examples.

Example 12.4 If {ξk}k≥1 is a sequence of independent random variables on (Ω,F ,P), then
G∞ =

⋂∞
n=1 σ {ξj : j > n} is the tail σ-algebra of the independent random sequence {ξk}k≥1.

Any element in G∞ is called a tail event. Suppose A ∈ G∞ we prove that P(A) = 0 or 1,
which is called Kolmogorov’s 0-1 law. It follows that G∞-measurable function Z must be
constant almost everywhere, so that Z = E [Z] a.e.

Theorem 12.5 (A. Kolmogorov, The Strong Law of Large Numbers) Let {ξk}k≥1 be a se-
quence of independent integrable random variables on (Ω,F ,P) with the same distribution.
Then 1

n

∑n

k=1 ξk → E [ξ1] almost everywhere.

Proof. Let (Gn)n≥0 be the decreasing family of σ-algebras generated by the sequence
(Xn), where Xn =

∑n

k=1 ξk. That is

Gn = σ {Xm : m ≥ n} = σ {Xn, ξj ≥ n+ 1} .

Let Mn = 1
n
Xn. We show that M = (Mn) is a (time-reversed) martingale with respect to

(Gn). First we observe that, since ξ1, · · · , ξn are independent, with the same distribution, we
thus have

E [ξi|ξ1 + · · ·+ ξn] = E [ξ1|ξ1 + · · ·+ ξn] .

In fact, for every i, Xn − ξi and ξi are independent, their distributions are independent of i.
Thus (ξi, Xn) has the same distribution as that of (ξ1, Xn). Since in general the conditional
expectation E [ξ|ζ] of ξ given ζ is a function of ζ depending only on their joint distribution,
thus E [ξi|Xn] is independent of i = 1, · · · , n. Hence E [ξi|Xn] = E [ξ1|Xn] for all i ≤ n (here
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the assumption that ξj has the same distribution is essential). On the other hand, since ξi
are independent, so that

E [ξ1|Xn] = E [ξ1|Xn, ξj : j ≥ n+ 1] = E [ξ1|Gn]

and therefore

Mn =
1

n
E [Xn|Xn] =

1

n

n
∑

j=1

E [ξj|Xn] =
1

n

n
∑

j=1

E [ξ1|Xn]

= E [ξ1|Xn] = E [ξ1|Gn] .

Therefore, M is a time-reversed martingale, and M = (Mn) is uniformly integrable, thus,

according to Corollary 12.3, Mn → M∞ = E

[

ξ1|
⋂∞

j=1 Gj

]

almost everywhere. Since

M∞ = lim
n→∞

ξm+1 + · · ·+ ξn
n

so M∞ is σ{ξj : j ≥ m + 1}-measurable for any m, thus M∞ is measurable with respect
to the tail σ-algebra, according to Kolmogorov’s 0-1 law, M∞ must be a constant (almost
surely), so that M∞ = E [M∞] = E [ξ1].

We should point out that the strong law of large numbers for i.i.d. sequences is still a
special case of Birkhoff’s ergodic theorem for strictly stationary sequences. Birkhoff’s ergodic
theorem however rquies a different approach and thus provides a different proof for the strong
law of large numbers.

13 Doob’s decomposition for super-martingales

We introduce an important tool for the study of martingales, Doob’s decomposition for
square-integrable super-martingales. The extension to the continuous time case is much more
difficult, called Doob-Meyer’s decomposition, which is the key in order to define stochastic
integrals with respect to martingales.

Suppose X = (Xn) is a super-martingale on a filtered probability space (Ω,F ,Fn,P).
Thus E [Xn+1|Fn] ≤ Xn, so roughly speaking on average, n → Xn is decreasing. Doob’s
decomposition is an explicit statement about this fact. The idea is to seek for a martingale
Mn and an increasing sequence An such that Xn = Mn − An. Let A0 = 0 and M0 = X0.
Since

Xn+1 −Xn = Mn+1 −Mn − (An+1 − An)

and conditional on Fn, to obtain

E [Xn+1|Fn]−Xn = −E [An+1 − An|Fn] .

If we impose the condition that An is Fn−1-measurable for every n ≥ 1 (such a sequence is
called predictable). Then

An+1 = An +Xn − E [Xn+1|Fn] =
n
∑

j=0

(Xj − E [Xj+1|Fj]) =
n
∑

j=0

E [Xj −Xj+1|Fj]

for n ≥ 0. We note that, since Xn is a super-martingale, thus (An) is increasing and
predictable, with A0 = 0, and it is direct to verify that Mn = Xn + An is a martingale.
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Theorem 13.1 (Doob’s decomposition for super-martingales) Let X = (Xn) be a super-
martingale over a filtered probability space (Ω,F ,Fn,P). Then there is a unique increasing
predictable random sequence (An) with A0 = 0, such that Mn = Xn + An is a martingale.
More precisely

An =
n−1
∑

j=0

(Xj − E [Xj+1|Fj])

and

Mn = Xn +
n−1
∑

j=0

(Xj − E [Xj+1|Fj])

for n = 1, 2, · · · , and A0 = 0, M0 = X0. The decomposition Xn = Mn − An is called Doob’s
decomposition for the super-martingale X = (Xn).

Let us apply Doob’s decomposition to square integrable martingales.
Suppose that M = (Mn) is a martingale such that E [M2

n] < ∞ for each n. Then M2
n

is a sub-martingale, so −M2
n is a super-martingale. Therefore there is a unique increasing

predictable random sequence An such that −M2
n + An is again a martingale, where

An =
n−1
∑

j=0

(

−M2
j + E

[

M2
j+1|Fj

])

=
n−1
∑

j=0

E
[

M2
j+1 −M2

j |Fj

]

=
n−1
∑

j=0

E
[

(Mj+1 −Mj)
2 |Fj

]

which is called the bracket process associated with M . The bracket process will play an
important role in the study of martingales, so let us give a definition.

Definition 13.2 1) Let M = (Mn) be a martingale with Mn ∈ L2(Ω) for every n. Then the
bracket process 〈M〉 associated with M is the unique predictable, increasing sequence with
〈M〉0 = 0 such that M2

n − 〈M〉n is a martingale. Explicitly 〈M〉 is given by

〈M〉n =
n−1
∑

j=0

E
[

(Mj+1 −Mj)
2|Fj

]

for n ≥ 1, 〈M〉0 = 0. That is, 〈M〉 is the conditional quadratic variational process associated
with M . In particular, for any bounded stopping time T , E [M2

T −M2
0 ] = E [〈M〉T ], and

sup
n

E
[

M2
n −M2

0

]

= sup
n

E [〈M〉n] = lim
n→∞

E [〈M〉n] = E [〈M〉∞]

where 〈M〉∞ = limn→∞ 〈M〉n (which may be infinity), and the last equality follows from
MCT applying to 〈M〉n ↑ 〈M〉∞.

2)The quadratic variational process [M ]n associated with M is defined by [M ]0 = 0 and

[M ]n =
n−1
∑

j=0

(Mj+1 −Mj)
2

for n ≥ 1.
3) A martingale M = (Mn) is called a squared integrable martingale if supn E [M2

n] < ∞
(i.e. {Mn : n ≥ 0} is bounded in L2(Ω).)
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By a direct computation we have

Lemma 13.3 1) Let M = (Mn) be a martingale on a filtered probability space (Ω,F ,Fn,P)
such that Mn ∈ L2(Ω). Then [M ]n − 〈M〉n is a martingale, while 〈M〉 is predictable, and
[M ] is an adapted increasing sequence.

2) Suppose that M and N are two martingales such that Mn, Nn ∈ L2(Ω), then MnNn −
〈M,N〉n is a martingale, where the mutual bracket

〈M,N〉n =
1

4
(〈M +N〉 − 〈M −N〉)

=
n−1
∑

j=0

E [(Mj+1 −Mj)(Nj+1 −Nj)|Fj] .

for n ≥ 1, 〈M,N〉0 = 0, which is a predictable process.

Suppose that M = (Mn) is a martingale, and H = (Hn) is a predictable process, the
martingale transform H.M (which corresponds the Ito integral of H against M , so called
discrete stochastic integral of H against M) is defined by (H.M)0 = 0 and

(H.M)n =
n
∑

j=1

Hj(Mj −Mj−1)

for n ≥ 1. Then

〈H.M〉 =
n−1
∑

j=0

E
[

(Hj+1(Mj+1 −Mj))
2 |Fj

]

=
n−1
∑

j=0

H2
j+1E

[

(Mj+1 −Mj)
2|Fj

]

=
n
∑

j=1

H2
j (〈M〉j − 〈M〉j−1)

which is H2. 〈M〉, the stochastic integral of H2 with respect to the increasing process 〈M〉.
The bracket processes play a fundamental role in Ito’s stochastic integration theory. Here

we only give an elementary application of the bracket process.

Theorem 13.4 Let M = (Mn) be a martingale on a filtered probability space (Ω,F ,Fn,P)
such that Mn ∈ L2(Ω). Then M∞ = limn→∞Mn exists on {〈M〉∞ < ∞}.

Proof. [The proof is not examinable]. Since

{〈M〉∞ < ∞} =
∞
⋃

l=1

{〈M〉∞ ≤ l}

so we only need to show that M∞ = limn→∞Mn exists on each {〈M〉∞ ≤ l}. Let l > 0,
and T = inf

{

k ≥ 0 : 〈M〉k+1 > l
}

. Then T is a stopping time as 〈M〉 is predictable, so that
by Theorem 10.4, M2

T∧n − 〈M〉T∧n is martingale, thus E [M2
T∧n] = E [〈M〉T∧n] ≤ l for all

n. Therefore {MT∧n} is a uniformly integrable martingale, so that limn→∞ MT∧n exists. In
particular, limn→∞ Mn exists on {T = ∞}, so does on {〈M〉∞ ≤ l} for any l > 0.

Recall that if X = (Xn) is a SMartingale which is uniformly integrable, then Xn → X∞

almost surely and in L1. For the Lp-bounded martingale, we have the following
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Theorem 13.5 Suppose X = (Xn)n≥1 is a martingale which is bounded in Lp-space for
some p > 1, that is, supn E [|Xn|p] < ∞, then (Xn)n≥0 is uniformly integrable, and Xn → X∞

almost surely, and in Lp-space. Moreover

E [|X∞|p] = sup
n

E [|Xn|p] .

Proof. [The proof is not examinable.] It is known that supn E [|Xn|p] < ∞ for some
p > 1 implies that (Xn) is uniformly integrable, so that Xn → X∞ almost surely and in L1.
Let g = limn→∞ supk≤n |Xk|. Applying Doob’s Lp-inequality to the sub-martingale |Xn| we
have

E

[∣

∣

∣

∣

sup
k≤n

|Xk|
∣

∣

∣

∣

p]

≤
(

p

p− 1

)p

E [|Xn|p] ≤
(

p

p− 1

)p

sup
n

E [|Xn|p] .

Thus, by MCT we conclude that

E [|g|p] ≤
(

p

p− 1

)p

sup
n

E [|Xn|p] < ∞

that is |g|p is integrable. Now |Xn −X∞|p → 0 almost surely, and |Xn −X∞|p ≤ 2p|g|p for
all n, so by Lebesgue’s dominated convergence theorem, we have

E [|Xn −X∞|p] → 0

as n → ∞. Since |Xn|p is a sub-martingale, so that n → E [|Xn|p] is increasing, and therefore

E [|X∞|p] = lim
n→∞

E [|Xn|p] = sup
n

E [|Xn|p] .
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