B8.1: Martingales Through Measure Theory
by Zhongmin Qian
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1 Measures and integration

Let us begin with a few complementary results in Lebesgue’s theory of measures and inte-
grations. These notes should be read along with my “Part A Integration” lecture notes if
you haven’t taken the Lebesgue Integration course yet. The latter provides the background
material which I assume you already know.

The conventions about the extended real line [—oo, o] will be applied in these notes,
where two symbols —oo and oo are added to R, so that [—oo, 00] = {—oc0} UR U {o0}. For
every a € R, —oo < a < o0,

a+00=00+a=00,0—00=—00+a= —00.
oy
—00 00
but 22, &, 00 — 00, 00 + (—00) and (—00) + oo are not defined, while 0-co = —oc0 -0 = 0,
—00 + (—00) = —00 and 0o + 0o = 0.

Let us generalize the notions of measures and outer measures introduced in Part A
Integration with modification, for our convenience for this course.

1. Measures. Let {2 be a (sample) space, and R be a collection of some subsets of {2.
Suppose R contains an empty set denoted by @. A function p : R — [0,00] is called a
measure on R if

L.1) p(@) =0,

1.2) pu(A) < p(B) for A, B € R such thst A C B, and

1.3) p is countably additive:

H (U Ai) = ZM(Ai)

for any A; € R (i =1,2,---) which are disjoint, such that J;~, A; € R.

2. Quter measures. If the condition of countable additivity 1.3) is replaced by countable
sub-additivity, then we obtain the definition of outer measures. That is,  is an outer measure
on R, if 1) and 2) hold, and x is a countably sub-additive:

p(A) < ZM(Ai)

for any A;,A€ R (i=1,2,---) such that A C U°, A;.

3. Finite measures and o-finite measures. A measure p on R is finite if u(F) < oo for
every F € R. u is called o-finite on R if there is a sequence of subsets E; € R such that
Ui, Ei = 2 and u(E;) < oo forevery i = 1,2,---. If u(£2) = 1, then p is called a probability
measure on R.

4. Ring, algebra, o-algebras and measurable spaces. We haven’t imposed any algebraic
structures yet on R. Several notions may be introduced via set-theoretic operations: U, N
and complementary operation \. A collection R of subsets of (2 is called a ring over 2 if
EyUE; € Rand E; \ E; € R for any Ey, Es € R. A ring R is an algebra if the total space
2 € R. An algebra F over {2 is called a o-algebra (or called a o-field) if |J;2, E; € F for
any E; € F. If F is a o-algebra over (2, then ({2, F) is called a measurable space.



If A is a non-empty collection of some subsets of {2, then there is a unique o-algebra over
(2, denoted by o{A}, which possesses the following properties: (1) A C o{A}, and (2) if F
is a o-algebra over {2 containing A, then o{A} C F. In fact

o{A} = ﬂ {F : F is a o-algebra containing A} .

o{A} is the smallest o-algebra containing A, called the o-algebra generated by .A.

5. Measure spaces and probability spaces. If ({2, F) is a measurable space and p is a
measure on F, then (2, F, u) is called a measure space. If (§2) = 1 then (£2, F, p) is called
a probability space. In this case {2 is called a sample space (of fundamental events), an
element A in the o-algebra F is called an event, and p(A) is called the probability that the
event A occurs. A probability measure p is usually denoted by a blackboard letter P.

6. Measurable functions. 8(R™) denotes the Borel o-algebra on R”, which is the smallest
o-algebra containing open subsets. A function f : Q — [—00, 00| is measurable with respect
to a o-field F, or simply called F-measurable, if

@) ={feG={weQ: flw) eG}
belongs to F for every G € Z(R), and both f~!(c0) and f~'(—oc0) belong to F as well.

7. Structure of measurable functions. A simple (measurable) function ¢ on (£2,F) is
a (real valued) function on {2 which can be written as ¢ = Y ;_, ¢x1p, for some n, some
constants ¢; and some Ej, € F. A function f : 2 — [0, 00] is F-measurable, if and only if
there is an increasing sequence of non-negative, F-measurable simple functions ¢, such that
v, T f everywhere on (2.

8. Definition of Lebesgue’s integrals. Let (£2,F, ) be a measure space. The Lebesgue
theory of integration, developed in Part A Integration, may be applied to the measure pu.
Let us recall quickly the procedure of defining Lebesgue’s integrals. First define integrals
for simple functiona, namely, if ¢ = ZTZI cjlp, is a non-negative (F-measurable) simple
function on £2, where ¢; > 0 and E; € F fori = 1,--- ,m, then [, odu = 3" ciu(E;). If
f 82— [0,00] is a non-negative F-measurable function, then

/fd,u:sup{/godu ¢ < f where ¢ = chlg andcl>OE€}"}
Q

=1

9. Integrable functions. If f is non-negative measurable and if fQ fdup < oo, then we say
f is (Lebesgue) integrable on {2 with respect to the measure u, denoted by f € L'(2, F, ),
f e LY, pu), L'(N2) or simply by f € L' if the measure space in question is clear. If
f: 2 — [—o00,00] is F-measurable, so are f* = fVvO0, f-=(=f)VO0and |f|=f"— f".
If both f* and f~ are integrable, then we say f is integrable, denoted by f € L'(§2, F, )
etc., and define its (Lebesgue) integral by

/ fu = /Q frdp - /Q fdn

If f:6 — Cis a complex, F-measurable function: f = u + +/—1v, then f is integrable
if both real part v and imaginary part v are integrable against the measure u, and in this
case, the Lebesgue integral of f is defined by

/Qfdu:/ﬂuduntx/—_l/ﬂvdu
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LY(£2, F, 1) denotes the vector space of all F-measuable (real or complex valued) integrable
function on (2, F, p).

The convergence theorems are applicable to a measure space ({2, F, 1), and they may be
stated as the following.

10. Monotone Convergence Theorem (MCT, due to Lebesque and Levi). Suppose f, :
2 — [0, 00| are non-negative, measurable, and suppose f,11 > f, almost everywhere on (2

for all n, then
/ lim f,dp = lim /fnd,u:sup/ frndpe.

In particular, if { fQ fndu} is bounded above, then lim,,_,., f, is integrable.

11. Series version of MCT (due to Lebesgue and Levi). This is very useful and is handy
in applications. If a, are non-negative and measurable, then

andp = / Qndft.
i min=3
12. Fatou’s Lemma. Suppose f, : 2 — [0, 00| are non-negative and measurable, then

/ liminf f,dp < hm mf fnd,u
Q

n—oo

13. Lebesgue’s Dominated Convergence Theorem (DCT). Suppose f, : §2 — [—o0, 0] (or
fn s 2 — C) are measurable, f,, — f almost everywhere, and suppose there is an integrable
(control) function ¢ such that |f,| < g almost everywhere for all n, then f, are integrable

and
n—oo

lim fndu / fdu.
Q

14. Reverse Fatou’s Lemma. Suppose f,, and g are integrable, and f,, < g almost surely
forn=1,2,---. Then g — f,are non-negative, and liminf(g — f,,) = g —limsup f,,. Applying
Fatou’s lemma to g — f,, we obtain

[l st 1

/gd,u—hmsup/ fndp
n—oo

which in particular yields that

/ gdp — lim Sup/ fndp >0

n—o0

so that limsup,, o [o fadp < [ gdp. If limsup,,_, o [, fadp > —oo, then

/ gdp — lim sup/ frdp < o0

n—oo

so that g — limsup,,_, ., f, is integrable, and limsup,,_, . [, fadp < [, limsup,,_,.. fudp. Let
us state what we have proved as the following.



Theorem 1.1 (Reverse Fatou’s Lemma) Suppose f, and g are integrable, and f, < g
almost surely forn =1,2,---, and suppose limsup,,_, fQ fndp > —o0, then limsup,,_, . fn
1s integrable and

/lim sup fpdp > lim sup/ fndpt.
) Q

n—o0 n—oo

15. Notations. If f € LY(2, F,u) or if f is non-negative and measurable, then we also
use B*(f), u(f) or E(f) to denote Lebesgue integral [, fdu. If A € F, then (A, ANF,p) is
a measure space too. In this case [ 4 fdp concides with fﬂ fladp, which will be denoted by
E~[f : Al or by E[f : A] if the measure in question is clear.

16. The LPspace for p € [1,00] can be defined over a measure space. When dealing with
LP-spaces, we identify an F-measurable function f on ({2, F, ) with its equivalent class of
all F-measurable functions which are equal to f almost surely on 2. Then LP({2, F, u) is the
vector space of all F-measurable functions f such that |f|P is p-integrable, equipped with
the LP-norm: if p € [1,00), then

171, = ( / \frpdu)’l’ _ (ElP)E

| fll, =inf{K :|f] < K on 2\ N for some N € F such that u(N) = 0}

If p = o0, then

which is called the p-essential supremum of |f|.

17. Convergence in LP-spaces. LP({2,F,u) are Banach spaces. f — ||f||, is a norm
on LP(£2,F,pu), and LP(£2,F,pu) is a complete metric space under the induced distance
(f,9) = |If — gllp- We say a sequence f,, converges to f in LP(£2, F,u) if f, and f belong
to LP(£2, F, ) and || f, — f|[, = 0, which is equivalent to that [, |f, — f[?du — 0.

Let us give a short discussion about the convergence in L!-space, and we will come back
to this topic by introducing the notion of uniform integrability. The following simple fact
about L!-convergence, it is quite useful though, and its proof is a good exercise about DCT.

Theorem 1.2 (Scheffe’s Lemma) Suppose f, and f are integrable, and f, — f almost
surely. Then f, — [ in L*(2,F,u) if and only if E*[| f.|] — E*[| f]]-

Proof. “Ounly if” part is easy. In fact, if f,, — f in L', then, by the triangle inequality,

[ ful = [fI < 1fn = /]

0< \/Q|fn|du—/g|f|du\ ='/Q<\fn|—|fr>] < [ 1.~ sldu 0

which implies that [, [fu|dp — [ ] f]dp.

Proof of “If” part. Assume that f, — f almost surely and [, |fuldp — [, |f|dp. We
want to show that f, — f in L. To this end, we decompose the sample space {2 into two
components for each n: A, = {f.f >0}, B, = {f.f <0}. Then

[fo = fI=[fal =[£I on Ay

so that



and, by the triangle inequality,
[fo = fl=ful + A< A fal = AT+ 21f] on B,

Hence

/Q‘fn—f,dﬂ://‘n’fn_f‘dﬂ"i_/n|fn_f’d,u
n| d n| — d
S A ey M AR RS TIE

_ = f]l d + 2 d

L= 1pndnez [ isian

— [ 1Al = 17l1dn+2 | 15, fld
0 )

The first term on the right-hand side of the previous inequality many be rewrriten as the
following

— — J— + — -
L= 1= [ =AD"+ [ gl =17 d
= [ 5l =1 du+2 [ (1l = 17D dn
? n

where we have used the identity
gl=9"+9 =97 —g +29 =g+2g".

Putting together we obtain the following estimate for the L'-norm of f, — f:

[ 1= sl < [ 18] = 1S di+2 [ a5l
= [anl=1obdns2 [ (Al =10 dur2 [ 1alflde ()
N n n

We next want to let n — oo in the inequality above. The first term on the right-hand side
tends to zero as n — oo by assumption. In fact

[ t=100dn= [ Ufulda [ 1fldu 0

as n — o0o. For the second term, we observe that

(ful = 1D~ =0 on {[ful = [f]}

and
([ful = 1S = 1ful = FI < [ful < 1S on {[fu| <I[f[}
so that

(Ifal = 17D~ < 1S]

for all n, |f| is integrable, and (|f.| —|f])” — 0 almost surely, thus by the Dominated
Convergence Theorem we conclude that

/Q (Ul = £ dps — 0.
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To show the last term on the right-hand side of (1.1) [}, |f|du tends to zero, we notice that
|fI1B, — 0. While it is clear that |f|1g, = 0 on {|f| =0} for all n. If |f(z)| > 0, and
fa(z) = f(x), then there is N (depending on z in general) such that | f,(z) — f(z)| < 1 f(z)
so that f,,(x)f(z) > 0foralln > N, hence z ¢ B, forn > N. Thus 1, (z) =0 foralln > N.
Hence |f|1p,(x) = 0 for all n > N. Since f,, — f almost surely, we thus can conclude that
|f|1p, — 0 almost everywhere as n — 0o. a |f|1p, is controlled by the integral function |f|,
so by DCT we have [, [fldu= [, |f[1p,du — 0. Therefore, by Sandwich lemma, it follows
from (1.1) that lim, o [, |fo — fldup=10. =

2 Carathéodory’s extension theorem

In this section we review the main tools for constructing measures.

1. w-system and montone class. Suppose C is a non-empty family of some subsets of (2,
then C is called a m-system if C is closed under the intersection, that is, AN B € C whenever
A, B € C. A collectionM of some subsets of (2 is called a monotone class (or claaed d-class)
1f1)_(2€./\/l 2)if A,B € Mand A C B then B\ A e M, 3) U, A, € M whenever
A,, € M such that A, 1.

Given a non-empty family H of some subsets of {2, M(#H) denotes the smallest monotone
class which contains H, called the monotone class generated by H. The existence and
uniqueness of M(H) are left as an exercise for the reader.

Lemma 2.1 (Dynkin’s lemma) If C is a w-system over {2, then M(C) coincides with the
smallest o-algebra o(C) containing C, that is, M(C) = o(C).

Since a o-algebra must be a monotone class, so that M (C) C o (C). To prove the other
inclusion that o (C) € M(C), one only needs to verify that M (C) is a o-algebra by using
the fact that C is a m-system. The proof is routine, see for example page 193, D. Willams:
Probability with martingales.

2. Uniqueness criterion. The following is a simple and useful uniqueness result.

Lemma 2.2 (Uniqueness lemma) Suppose p1; (j = 1,2) are two finite measures on a mea-
surable space (£2,F), and suppose C C F is a w-system containing the sample space 2 such
that o(C) = F. If u1(E) = pe(E) for every E € C, then uy = ps on F.

The proof of this lemma is an example how to use the Dynkin lemma.

Proof. Let G be the collections of all E € F such that ui(E) = pa(E). Then C C G by
assumptions. We prove that G is a monotone class. In fact, it is assumed that {2 € G. Since
(D) = po(2) = 0sothat @ € G. If A, B € G and A C B, then, since p;(B) < oo, we have

pi(B\ A) = pu(B) — p(A) = p2(B) — p2(A) = (B \ A)
which yields that B\ A € G. Suppose now A, € G, and A,, T, then

(UA > = hm p1(An )—7}1_{1010/12 <UA )

which implies that |J)~, A, € G. Thus G is a monotone class containing C. By Lemma 2.1,
GO M(C)=0c{C}=F,sothat u; = iy on F. m

There is another version of the uniqueness for o-finite measures.
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Lemma 2.3 Let p; (7 = 1,2) be two measures on (2, F), and R C F be a ring such that
o(R) = F. Suppose puy and uy are o-finite on R: there is a sequence of subsets G, 1 {2,
G, € R and p1(G,) = p2(Gy) < oo for every n. Suppose py(E) = po(E) for every E € R.
Then py = pg on F.

Proof. Apply Lemma 2.2 to finite measures yu;(- N G,,) for every n to conclude that
w1 (ENG,,) = pe(ENG,) for every nand E' € F. Letting n 1 oo to obtain that p; (E) = pe(F)
for every F € F. m

3. Measurable sets and Caratheodory’s extension theorem. The construction of measures
rely on the extension theorem of Carathéodory’s, a theorem that tells us how to select
measurable subsets for an outer measure. Let H be a g-algebra over a sample space {2, and
W'+ H — [0, 00| be an outer measure on ({2, ), so that

3.1) p* (@) = 0;
3.2) w*(A) < p*(B) for any AC B, A, B € H; and
3.3) p* is countably sub-additive:

(0n) 3w
n=1 n=1
for any sequence E, € H (n=1,2,--+).
A subset E € H is called p*-measurable, if F satisfies the Carathéodory condition that
P (F)=p(FNE)+u (FNES) forevery F € H. (2.1)

The collection of all ;1*-measurable subsets is denoted by M or M(H, p*) (in order to indicate
the dependence on the outer measure p* on (€2, H).)

Theorem 2.4 (Caratheodory) Let (£2,H) be a measurable space and u* be an outer measure
on (£2,H). Then the collection M(H, u*) of all pu*-measurable subsets forms a o-algebra over
2, and p* restricted on M(H, p*) is a measure.

The proof of the previous theorem is exactly the same as that in Part A Integration.

Theorem 2.5 (Caratheodory’s extension theorem) Let (2 be a space and R be a o-algebra.
If 1w is a measure on the algebra R, we can define the outer measure u* by

p*(E) = inf {ZM<EJ) . where E; € R and U E; D E}
j=1

J=1

where the inf runs over all countable cover {E;} of E and E; € R. Then any set E € R is
w*-measurable, and p*(E) = p(E), so that u* restricted on the o-algebra of all p*-measurable
subsets is an extension of (.

This is a consequence of Theorem 2.4, the only thing need to check is that every element
E of R, p*(F) = p(FE) (which is direct but not trivial).

4. Null sets. A subset £ € H is p*-null set if p*(E) = 0. If {E;:1=1,2,---} is a
sequence of p*-null sets, so is |J;-; E; by the countable sub-additivity. By definition, any
p-null set is p*-measurable. Therefore pu* is a complete measure on (2, M(H, i*)).
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5. Completion of a measure space. If (£2,F, 1) is a measure space, so it is extended to
an outer measure p* defined by

w(E) = inf {Z p(E;) : where E; € F such that U E; D E}
j=1

n=1

and let F* be the o-field of all p*-measurable subsets. Then ({2, F*, 1) is a measure space,
and F C F* . Let N* denotes the collection of all x*-null subsets, so that N* C F* too.
Hence F* = o {N* F} C F*. Thus (£2,F", u) is a complete measure space, called the
completion of (£2, F, p).

3 Lebesgue-Stieltjes measures — outline of constructon

These are the most important examples of measures used in analysis.

1. Increasing functions. Let p : (a,b) — (—00,00) be an increasing function, where
(a,b) C (—o0,00) is an open interval. Then the left limit p(t—) = limgy p(s) and the right
limit p(t+) = lim,,; p(u) exist at every t € (a,b), and

p(s) < p(t=) < p(t) < p(t+) < p(u)

for any a < s <t <wu <b. pis called right continuous (resp. left continuous) at ¢ € (a,b)
if p(t) = p(t+) (resp. p(t) = p(t—)). For any increasing function p on (a,b), py(t) = p(t+)
is right continuous at every t € (a,b). py is called the right continuous modification of p.
Similarly, p_(t) = p(t—) is left continuous at any ¢ € (a,b), p_ is called the left continuous
modification of p. Therefore, an increasing function p is right continuous on (a,b) if p,
coincides with p by definition.

2. Constructing Lebesgue-Stieltjes measure. For every right continuous increasing func-
tion p on (a,b) we construct a measure m, on a o-algebra M, consisting of m,-measurable
subsets of (a,b). The construction is divided into several steps.

2.1) Decide what we want. Let % (a,b) be the m-system of all intervals (s,t], where
a < s <t <b,and we decide to assign a measure of such (s, ] to be m,((s,t]) = p(t) — p(s).

2.2) Defining an outer measure. With m, defined on the 7-system % (a,b), we can assign
an outer measure for any subset F C (a,b), typically by

m(E) = inf {Z m,(C;) : where C; € €(a,b) such that U C; D E}
j=1

J=1

where the inf runs over all possible countable covers of E' through €. m} is an outer measure
on #(a,b) which is the o-algebra of all subsets of (a,b).

2.3) Apply Caratheodory’s theorem. By Theorem 2.4, the collection of all my-measurable
subsets E of (a,b) is a o-algebra on (a,b), denoted by M,, and m} : M, — [0,00] is
a measure. m, is called the Lebesgue-Stieltjes measure on (a,b) associated with a right
continuous increasing function p on (a,b).

The above three steps of constructing measures from outer measures apply to general
cases, not only for measures on intervals. The most important question is of course to
identify the measurable sets, i.e. to identify the o-algebra M, of m}-measurable subsets.



2.4) Identifying measurable sets. Let Z%(a,b) be the ring of all subsets E C (a,b) which
are finite unions of subsets in €(a, b). The main technical step is to prove the finite additivity
of m} restricted on the ring #Z(a,b). That is, if £ € %#(a,b), so that E = UL, C; where
C; = (sj,t;],a<s; <t; <b(j=1,2,---,m) such that (s;,?;] are disjoint, then

my,(E) = Z(P(tj) —p(s;))-

Jj=1

Therefore, it follows that the outer measure m} restricted on the ring %(a,b) is finitely
additive.

We then can show that any set £ € #(a, b) is mj-measurable, so that € (a,b) C #(a,b) C
M,,. Thus the Borel o-algebra #(a,b) C M,. It is easy to verify that

Bla,b) = (a,b) [ B(R) = {<a, b)(G : where G € %’(R)}
={G: G C(a,b) and G € B(R)}.
Therefore any Borel subset of (a,b) is measurable with respect to the Lebesgue-Stieljes
measure 1m,. The restrictionof the outer measure m; on M, is denoted by m,,.
Thus for every right-continuous increasing function p on an open interval (a,b), we

have constructed a measure space ((a,b), M,, m,), which is o-finite and complete. Also
((a,b), #(a,b),m,) is a measure space, o-finite, which is not complete in general.

3. Notations. If p is an inceasing function on (a, b), then its right continuous modification
p+(t) = p(t+) is right continuous, so that the Lebesgue-Stieljes measure m,,, is defined, which
is called the Lebesgue-Stieljes measure associated with p, denoted by m,,, that is, m, = m,
and M, = M, . In particular, m, is the unique measure on ((a,b), %(a,b)) such that

my((s,t]) = py(t) — py(s) = p(t+) — p(s+)

for any a < s <t < b. In particular

ma({eh) = tim m, (= 21 =t [ote) (2= 3 ) )

= p(t+) — p(t—)

for every t € (a,b). In particular, {t} (where t € (a,b)) is an m,-null set if and only if p is
continuous at t.

4 Generalized measures and Radon-Nikodym’s deriva-
tive

1. Generalized measures. Let (§2, F) be a measurable space. If 1 and po are two measures
on F, and if one of them is finite so that their difference

W(E) = w(E) - pa(E)

for E' € F defines a function (called a signed measure) from F to [—oo, oo], which is, though
not a positive measure, countably additive. Such “generalized measures” are interesting and
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are arisen naturally in Lebesgue’s integration. For example, if f is integrable function on a
measure space ({2, F, i), then

ui(B) = [ fdu= [ srdu= [ fan tor B e

is an example of “generalised measures”. We thertefore generalize the definition of measures
to the so-called generalized measures as the following. A function p : F — (—o0, 00| is called
a generalized measure (which does not take value —oo) if

1) (@) =0,

2) u possesses the countable additivity:

H (G Az’) = iﬂ(!‘lz‘)

for any A; € F which are disjoint. While of course we can define generalized measures pu
take values in [—o00,00) instead, but it is not necessary, as in this case —u takes values in
(—00, 00].

2. Hahn’s decomposition for generalized measures. Clearly, any signed measure p =

{1 — pto, where p; are measures on (2, F) and us(€2) < oo, is a generalised measure. The
converse is also true.

Theorem 4.1 (Hahn’s decomposition) If u is a generalized measure on (£2,F), then there
is a decomposition 2 = AT U A~ , where AT, A~ € F such that ATN A~ = O, and

W(ENAT) >0, f(ENAT)<0

for every E € F. Moreover the positive and negative part AT and A~ are unique in the
sense that if A} and A; (where i = 1,2) are two pairs satisfying the Hahn’s decomposition,
then

WENAT) =u(ENAY), and p(EN A7) = p(EN Ay)

for every E € F.

Proof. [The proof is not examinable.] The unique sets AT and A~ (up to a “null set”)
are called the positive (resp. negative) set of the generalized measure u. Let

A =inf {u(G) : where G € F such that u(ENG) <0 for all £ € F}.

Choose a sequence G, € F such that u(G,) — X\ as n — oo. Then the candidate for A~
should be the largest possible negative set, that is

A= (G \UZGy).
n=1
In fact, A~ is still a negative set: pu(ENA~) <0 for every E € F, and therefore u(A~) = A
(which yields also that A > —o0). We claim that the pair AT = Q\ A~ and A~ is a
decomposition satisfying that u(EF N A") >0 and u(ENA~) <0 for every F € F.
We only have to show that pu(E N A') > 0 for every E € F, that is for any £ C AT,

u(E) > 0. Let us argue by a contradiction. Suppose there is an Ey C A1 such that
w(Eg) < 0. Then, since Fy N A~ = @, so that

p(A™ U Ey) = (A7) + u(Eo) = A + pu(Ep) < A

11



which is a contradiction to the definition of A\, and therefore A~ U E; can not be a negative
set of p, so there is a subset A; C Ej such that pu(A;) > 0. Hence

1
k1 = min {n € N: there is A; C Ey, u(4;) > —}
n

exists, and we can find an F; C F such that F; C E, and < u(Ey) < ﬁ Clearly
1(Eo \ Er) = p(Eo) — p(Er) <0

so we can argue as above with Ey \ Fj in place of Ey and choose Ey C Ey \ E; such that

w(Es) > 0 and é < u(Es) < ﬁ, where

1
ko = min {n € N: thereis A; C Ey \ By, u(Ay) > —}.
n

Repeating the previous procedure we may construct a sequence of E, inductively, such
that £, C Fy\ U;:llEj [in particular E, are disjoint], k, are non-decreasing, such that
o S u(By) < g, and

n—1
1
kn:min{neN: there is A C Ey \ UEl such that p(A) > —}.
n

=1

We claim that ﬁ < 00, since, otherwise, we would have
1

Since pu(Ep) < 0 and
ZM )+ p(Eo \ Ul  En)

M(EO\GEn) =

which is a contradiction to the assumption that u(E) > —oco for every E € F. Therefore
it must be hold that k, — oo, so that u(E,) — 0, hence any subset of Ey \ U, E, has
non-positive measure, and

M(EO\GEn>—ME0 ZM

which contradicts to the definition of \. m
For a different approach, read W. Rudin: Real and Complex Analysis, Third Edition,
pages 120-126.

we may deduce that

3. Jordan’s decomposition for generalized measures. Thus, if p is a generalized measure
over (2, F), and {2 = AT U A~ is an Hahn decomposition with respect to p, then pu™(E) =
w(EN AT) and p=(F) = —u(E N A7) (where E € F) define two measures on (2, F).
Moreover, p~ is a finite measure. By definition, p = p™ — p~ is thus a signed measure, called
the Jordan decomposition of the generalized measure . We may also define |u| = pu* + p~

12



which is also a measure on ({2, ), called the total variation measure of the generalized
measure g =t — p”.
If p is a function defined on (a, b), which has finite total variation, that is,

sup > [p(t;) — p(t;1)| < o0
D D
where the sup takes over all possible finite partitions D :a <ty <t; < --- <t, <b. Then
prv(t) = Sup Z p(t;) — p(tj-1)|
t j_l

defines an increasing function, where the sup rns over all finite partions D; : a < tg < t; <
cee < t, =t, for every t € (a,b). pn(t) = prv(t) — p(t) is also increasing. In particular, p is
a difference of two increasing functions, so that p has left and right limits at every ¢ € (a, b).
Moreover, if p is right continuous at ¢, then so is ppy. Therefore if p is right continuous and
has finite total variation, then p = p; — ps a difference of two right continuous and increasing
functions. m, = m,, — m,, is a signed measure. In this case the total variation measure
M| = Mpry-

4. Lebesque’s integrals w.r.t. a generalized measure. The usual concepts about measures
may be applied to generalized measures via Jordan’s dcompositions. For example, we say a
generalized measure p is o-finite if || is o-finite, which is equivalent to say both p* and p~
are o-finite. The theory of Lebesgue’s integration may be applied to a generalized measure
w=pt—p on (£2,F) too. For example, an F-measurable function f : 2 — [—o0, 0] is
pu-integrable if and only if, by definition, f is integrable against the total variation measure
|| = 4 p~ (which is equivalent to say f is integrable with respect both measures p* and

p~), and in this case
/fduz/fdﬁ—/fdu-
Q 9) Q

5. Absolute continuity and Radon-Nikodym’s theorem. Next we turn to an important
concept about two generalized measures: the concept of absolute continuity.

Definition 4.2 Let v and p be two measures on a measurable space (2, F), then we say v
is absolutely continuous with respect to u, written as v < p, if E € F and u(E) = 0 implies
that v(E) = 0. That is, any p-null set is also a v-null set.

Theorem 4.3 (Radon-Nikodym'’s derivative) If u and v are two o-finite measures on ({2, F),
such that v < p, then there is a non-negative F-measurable function p such that

v(E) = / pdu for every E € F.
E

Moreover p is unique up to p-almost everywhere. p is called the Radon-Nikodym derivative
of v with respect to u, denoted by Z—Z.

Proof. [The proof is not ezaminable.] Let us outline the proof of this important theorem
for the case where v and p are two finite measures: (€2) < oo and v(§2) < co. In this case,
let .Z denote the collection of all non-negative measurable functions h such that

plh: E) = / hdp < v(E) for every E € F.
E

13



Then, £ is a non-empty class. Now consider A\ = sup,c ¢ fﬂ hdp. Then, clearly A\ > 0
and A < v(Q2) < oo. Choose a sequence of functions h, € .2 such that [, h,dp — A
Let p = sup, h,. We claim that p is the Radon-Nikodym derivative. To this end, set

pn = max{hy,--- , h,} for every n. For every n, we may choose a decomposition {2 = U?ZlEi(n)
where EZ-(”) € F which are disjoint, and p, = h; on EZ-(”) for i = 1,--- ,n. Thus, for every
E € F, we have

/ pudp = Z/ hidp <Y " v(E;N E) = v(E)
E =1/ ENE i=1

that is, p, € £. By definition, p, 1 p, so by MCT, p = limp, € L'(Q, 1), and by our
construction, [, pdp = X and p € Z, ie. [, pdp < v(E) for every E € F. In particular,
p < oo p-almost everywhere, hence v-almost everywhere as v < u. Therefore, we may
assume that p is finite everywhere.

We next show that v(FE) = [, pdu for every E € F. To this end consider the generalized
measure

m(E) = v(B)~ [ pdy

where F € F. Since p € £, m is a measure, and we want to show that m = 0. Suppose
there is Ey € F such that m(Ey) > 0, thus

v(Ep) >/ pdjs.
Eo

Hence, there must exist € > 0, such that v(Ey) > eu(Ep). Applying Hahn’s decomposition
to the generalized measure v — ep, there is an positive set AT with respect to v — ey, so that
V(AYNE)—eu(ATNE)>0

and
v(AT) —eu(AT) > 0.

Since v < p, the last inequality yields that pu(A*) > 0. Now consider ¢ = p + €l+. Then
for every E € F, we have

/sodu =/ (p+€1A+)du+/ pdp
E ENA+ E\A+

<(v-m)(ENAY) +eu(ENAY)+v(E\ A")
<Vv(ENAT)+v(E\AT)
=v(F)

so that ¢ € .Z. On the other hand

/godp:/pdu+€/1Adu:)\+eu(A)>)\
0 0 Q

a contradiction to the definition of \. m

6. An integral formula. The following theorem follows from a routine computation.

Theorem 4.4 Suppose i and v are two o-finite measures on (£2,F), such that v < p. Let

be an F-measurable function. Then f is integrable with respect to v if and only if f% is
f f f g P f yif f

d
integrable with respect to p, and g
d
/ Fdv = / .
Q o du

14



7. Conditional expectations. This is perhaps the most important concept in probability
theory. Let (£2,F,u) be a measure space, and let f : 2 — [0,00] be F-measurable. For
every A € F, define pup(A) = [, fladp = [, fdu. Then py is a measure defined on F.
In fact, if A, is a sequence of disjoint F-measurable subsets, then fl~ 4, = Yo fla,,
thus, by MCT (series version) we have

s (U An) - / Fluz, andp = / flagdp = ps(An)
n=1 2 n=1"Y% n=1

so g is a measure on ({2, F).

s possesses an important property — if A € F is a p-null set, i.e. p(A) = 0, then A
is also a pip-null set: pr(A) = 0 [which of course follows from that the integral of function
on a null set is zero on any measure space]. That is to say the measure py is abosoultely
continuous with respect pu, that is, py < . Conversely is also true, which is the context of
Randon-Nikydom’s theorem.

Suppose (§2, F, 1) is a measure space, and G is a sub o-algebra of F. Suppose p is o-finite
on G, so that there is a sequence G,, € G, G,, T 2 and u(G,) < oo for every n. Let f be
F-measurable and non-negative such that f is o-integrable on G, that is, there are G,, € G
such that G, T 2 and fGn fdp < oo for every n. Then p1y < p as measures on ({2,G), and
both p1; and g are o-finite measure on (£2,G), therefore, by applying Randon-Nikydom’s
theorem to p and g on (£2,G), there is a G-measurable and non-negative function p (unique
up to p-almost surely) such that ps(A) = [, pdu for every A € G [that is, p is the Random-

du du
the conditional expectation of f given G, denoted by E#[f|G] or simply by E|[f|G] if the
measure j involved is clear. The conditional expectation possesses the following properties:
1) E[f|G] is G-measurable,
2) for every A € G we have

Nikydom’s derivative of py with respect to i on G, so denoted by p = dity ]. dﬁ‘ is called
g g

Elf: Al =E[E(f|9) : A]
that is
E[f1a] = E[1AE[f]G].
In particular, E [f] = E [E [f|G]], so that, if f is integrable, so is its conditional expectation
E [f]G], which allows us to define the conditional expectation of an integrable function f by

E[fIG] =E[f*IG] —E[f79] .

5 Product measures and Fubini’s theorem

1. Product of several o-algebras. Let A and B be two sets. Then A x B (the product set)
is the set of all ordered pairs (z,y) where x € A and y € B. Let {2, and (2, be two spaces.
Then (21 x {25 is also called the Cartesian product space. Suppose F; and F; are algebras on
spaces {27 and {25 respectively, then F; x JF5 is in general not an algebra, but the collection
of all finite unions U§:1 A; x B; (where A; € F; and Bj € F, and k is a positive integer) is
an algebra. If F; are o-algebras, F; x JF3 is in general not a o-algebra, and we define F; ® F,
to be the smallest o-algebra containing F; x Fu, that is, F; ® Fy = o {F; x Fo}. The
construction may be extended to the product space of finite many spaces. More precisely, if
(£2;,F;) (i=1,---  n) are measurable spaces, then

]-'1®...®fn:o'{A1X---XAniAie]:i}
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and (1 ® - ® 2, F1 ® -+ F,) is called the product measurable space of ({2;, F;).

Exercise 5.1 1) Suppose S; (i =1,--- ,n) are topological spaces, so that the product space
S1 X --- xS, carries the product topology. Show that

B(Sy x--+x8,)=B(S)® - B(S,).
2) If ($2;, Fi) (i=1,2,---) are measurable spaces, then

FioFheF = Fe(FeF)
= (Fi®F) ® F;.

2. Product o-algebra of countable many o-algebras. Let us now consider a sequence of
measurable spaces ({2;, F;) (i = 1,2,---). The Cartesain product [[;°, £2; is the space con-
sisting of all sequences (1, -+ ,z;,---) where x; € 2; for i = 1,2,---, and define [[.°, ®F;
to be the smallest o-algebra containing all [[2, A; where A, € F; for all i and 4; = (2
except for finite many © € N. ([[;2, £2;, ]2, ®F;) is called the product measurable space of
(2, F),i=1,2--.

3. Measurable sections. Now let us come to the construction of product measures on
product spaces. We need the following elementary fact.

Lemma 5.2 If F; and F5 are algebras on §21 and (25 respectively, then the collection
A(F1, Fs) of all finite disjoint unions Ule A; X B; for some k € N, where A; € Fy, B; € Fy
and all products A; X B; are disjoint, is an algebra on §21 X (5. If F1 and F5 are o-algebras,
then fl X FQ = U{A(.Fl,FQ)}.

Lemma 5.3 Let (2, F;) (i = 1,2) be measurable spaces. 1) If A € Fy ® Fo, then for each
x1 € {21 the section
Ay ={z2 € 2y (11,20) € A}

is measurable, i.e. A, € Fo. Stmilarly
A" ={zy € () : (x1,29) € A}

belongs to F.
2) Suppose f is measurable on ({21 X {25, Fy @ F), then for each x1 € (2, the function
fur (22) = f(x1,22) is Fo-measurable.

Proof. Proof of 1). Let £ be the collection of all E C {2 x {25 such that its z1-section
is measurable. Then & is a o-algebra containing all A x B where A € F; and B € F,.
Therefore F; ® Fy C € which proves 1). To show 2), we notice that

{zg 1 fo,(x2) > a} ={z2: f(x1,22) > a}

which is the zj-section of {f > a} (which is F; ® Fy-measurable), so its x;-section is Fo-
measurable. Therefore f,, is Fo-measurable. m

In particular, if S; are topological spaces with Borel g-algebras, and if f is Borel measur-
able on S; x Sy with the product topology, then its section f,, (for each z; € S;) is Borel
measurable on Ss.

4. Product measure of two measures. The following is the main technical fact in the
construction of product measures.
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Lemma 5.4 Let (£2;, F;, i) (i = 1,2) be two finite measure spaces. Then for any A €
F1 @ Fo, x1 — po(Az,) (resp. o — ui1(A*?)) is measurable on (21, F1) (resp. (22, F»)) and

/Q n(Agy )y (diey) = /Q 2 (A7) 1y () (5.1)

the common value is denoted by py X ps(A), so that py X ug is defined on Fy & Fo.

Proof. Let £ denote the collection of all subsets A € F; ® F3 such that both functions
p2(Az,) and pi(A*) are measurable and (5.1) holds. By definition, F; x F, C £, and
by linearlity of integration, we can see that Z is a ring. On the other hand, by using
MCT, we can show that . is a monotone class. Therefore . must be a o-algebra, so that

$:F1®.7'—2. |

Theorem 5.5 Let (§2;, F;, ;) (i = 1,2) be two o-finite measure spaces. Choose a sequence
G, = A, X B, , where A, 1 (1, A, € F1, 1(A,) < o0, and similarly, B, T {2, B, € Fa,
w2(By) < 00, for everyn. If E € F) @ Fy then define

m(E) = lim X pa(E N Gy)

where py X pe(ENG,) is defined in Lemma 5.4. Then m is the unique o-finite measure on
(£ X (25, Fy ® F3), such that

m(A x B) = (A)ux(B) VA€ Fi, Be F. (5.2)
which will be denoted by py X o, called the product measure of 1 and ps.

Proof. Uniqueness follows from Lemma 2.3. Given a sequence {G,} satisfying the
conditions in the theorem. Since u; x p2(E N G,,) is non-negative and increasing, so that
m is well defined on F; ® F,. Clearly m(@) = 0, so we need to show that m is countably
additive. We prove this in two steps.

Note that pi(-NA,) and ps(- N B,) are finite measures, so that py x p(ENG,,) is well-
defined via (5.1), and is non-negative, increasing in n. We want to show that m is countably
additive. Suppose Ej € F; ® F, are disjoint sequence, and E = U | Ey. Then, for every n

m(ENG,) = /Q 11((B 1 G pip(diea) = /Q 11 (U (Ei 1 G iy (i)
/Q S (B Gl = 3 [ (B0 Gt

2k

k

where the fourth equality follows from MCT (series version). It follows that

m(ENG,) <Y m(Ey)
so that, by letting n — oo we obtain m(E) < )", m(Ej). On the other hand, for every N,
N
m(ENG,) > m(E,NG,)
k=1
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Letting n — oo we have m(E) > S._ m(E}), so that we also have m(E) > 3=, m(Ey).
Therefore m(E) = ), m(E}) which completes the proof. m

d. Product measure of finite many o-finite measures. Obviously, the same approach is
applied to finite many o-finite measure spaces, and we have

Theorem 5.6 Suppose (£2;, F;, i) (1 =1, ,n) are o-finite measure spaces, then there is a
unique o-finite measure iy X+ - - X i, called the product measure on (21X X2, F1®- - -QF,)
such that

py X oo X (A X oo X Ay) = i (Ay) - pn(A4,) VA € F

6. Product probability measure of countable many probability measures. However, there
is obstruction for constructing product measures on the product space of countably many
measure spaces, one can not, in general, use [[°; i(A4;) to define the measure of [[Z, A,
even if A; = (2; except finite many i. This approach on the other hand works for probability
spaces (§2;, F;, j1;) as in this case [[2, ui(A;) for [[2, A;, where A; = (2; except finite many
i, becomes a finite product as u;(§2;) = 1 for sufficient large i.

Theorem 5.7 Suppose (£2;, F;, i) (i = 1,2,---) are probability spaces, then there is a
probability measure [, p; (called the product probability measure) on ([1:2, 2, ]2, ®F;)
such that

i=1 i=1
for any A; € F; for all i and A; = 2; except for finite many .

Proof. [The proof is not examinable] Let % denote the ring of all subsets E C [[.2, £
which has the following form:

E:UAj,WhereAj:Agj)><---><A,(€j)><---

=1

A,(cj) € Fpfor j =1,---,n, and for every j, there is k;, such that A,(gj) = (2, for every k > kj,
for some n € N. If £ € # then we may choose a decomposition above such that A; (for
some n, j = 1,---  n) are disjoint, and define

m(E) =3 _m(A;) where m(4;) = (A7) - p(AY) -

each m(A;) is in fact a finite product as all jy; are probability measures. To see why m
is well defined and is in fact a measure on &%, we make the following crucial observation.
If Ey,---,En € %, then, there is a common K, such that for all n = 1,--- , N each
E, =AM x Qg1 X --- for some A ¢ HkK:1 Fi., and therefore

N
E=JE,=Ax Qg x-
n=1

for some A € Hle Fr. Since p; are probability measures, so by definition

m(En) = X -+ X p(A™)
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(the identity is no longer ensured if there are infinite many py with total mass g (2%) # 1).

Since py X - -+ X g is a measure, so that, if £, (n =1,---, N) are disjoint, then
N N
m(E) =y x - x e (A) =Dy x-- X p(AM) = " m(E,)
n=1 n=1

which shows that m is well defined on the ring # and m is finitely additive. Next, the
standard machinary may be applied to construct the product probability [];~; p;. Firstly,
define outer measure

m*(F) = inf {Z m(E,) : where E, € % such that U E,D E}
n=1

n=1

for every sunset £ C [[:2, £2;. Let M denote the o-algebra of all m*-measurable subsets.
Then m* is a measure on M (by the Carathodory extension theorem). Since Z is a ring
and m is finitely additive, we thus must have Z C M. Since [[;2, ®F; = o(#) C M, so
that m* restricted on [[;°, ®F; is a probability measure. The construction is complete. ®

7. Fubini’s theorem. Let us now turn to the Fubini theorem.

Let (£2;, Fi, p;) (i = 1,2) be two o-finite measure spaces. Suppose [ : 21 X {25 — (—00, 00)
is a measurable function, such that for almost all x; € (2, f,, is integrable on ({22, F2, ti2).
Hence, there is a set Ny € 2y with py(Ny) = 0, and for any x1 € 2,\ Ny, fo, € L' (2o, Fa, p12),
so that we can define

h(lj) = f$1 (l’g)ﬂg(dl‘Q) if xr1 € Ql \ Nl

22

otherwise h(z;) = 0. If there is a h € L'(£2y, Fi, 1), such that h = h almost surely w.r.t.
11, then we can form an integral

fm(f):/Q (1) pa (day).

One can show that, if [;5(f) exists (i.e. there is some N; and h satisfying the above con-
ditions), then I, 5(f) does not depend on N; and h, therefore I, 5(f) is called an iterated
integral of f over {27 x (25, denoted by

/91 ( QQf(lj,l‘Q)[Lg(dl'Q)) ji1(day).

Similarly we define the iterated integral

/92 < o, f(xh@)ﬂl(diﬂl)) pia(das).

Theorem 5.8 (Fubini’s theorem) Let p; be o-finite measure on (§2;,F;), where j = 1,2.
Suppose f 1 (21 X 25 — (—00,00) is a measurable function on the product measure space
(Ql X Qg7f1 X Fg)

1) If f € LY X 29, F1 @ Fa, j11 X ), then both iterated integrals exist and equal to the
integral f91x92 fd(py X po) .

2) Conversely, if one of the iterated integral of |f] is finite, then f € L'(£21 X 25, F1 ®
Fo, f1 X fha).
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Proof. By Theorem 5.5 and the definition of the product measure py x po, for every
E e Fi ® F5 we have

/ Lpduy X pig 2/ {/ 1EdM1] dpy = / [/ 1Edﬂ2:| dp
leﬂg .QQ 91 Ql 92

which yields that Fubini’s theorem holds for every non-negative simple measurable function.

Suppose f is non-negative and JF; ® Fo-measurable, then we can choose a sequence of
non-negative, measurable simple functions ¢, : {2, X {23 — [0,00) such that ¢, T f . By
MCT we have

/ fdpy X py = lim Ondpy X dpio
.QlX.QQ n

00 .Ql XQQ

= lim {/ gpndul} dus = lim D, dsy
92 Ql n—

n—oo e.¢] 92

where

2

which are non-negative, Fp-measurable and @, 71, thus by MCT applying to {&,} on
(25, F5, 112) to obtain

lim fﬁnduQ:/ lim @,dus :/ lim {/ gond,ul} dps.
n—oo 92 92 n—oo 92 n—oo Ql

Since for every xs, v,(,x2) T f(+,22) and non-negative, measurable, so by applying MCT
on ({21, Fi, 1) we thus have

lim l / wndm} = [ Jfdwm.
n—o00 o o)

Putting the previous equalities together we obtain

/ Fedpy x iy = / Fdpn | dpss
QlXQQ .QQ L .Ql

and similarly

/ fdpy X pg = / fdupa | dn
.Q1><.QQ .Ql L .QQ

for any non-negative, measurable function f. The conclusions of the theorem follow imm-
mediately. m

8. Completion of product measure spaces. Recall that, if ({2, F, ) is a o-finite measure
space, then F* is the completed o-algebra of F under the measure pu, that is, N denotes
the collection of all subsets of {2 with outer measure zero, then F* = o{F , N'}. We have
shown that p can be uniquely extended to a o-finite measure on F*, denoted again by pu.
Complications may arise if we consider the completion of ({21 x (29, F3 ® Fo, 1 X p2). In
general, the completion of F; ® F, under pq X ps does not coincide with the product o-algebra
of the completions of F; under p;, but we have

Lemma 5.9 Let (£2;, F;, 11;) be two o-finite measure spaces. Then
FI' @ F? C (F @ )
and

(]-’1 ® }"2)#1XM2 — (Jr{ll ® ]:'éu)mxuz .
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Proof. The proof is routine, left as an exercise. m

If f: 0 x 2y — (—00,00) is measurable w.r.t (F; ® Fo)"***#2 then its section f,, :
2y — (—00,00) by sending xs to f(x1,z2) is not necessary measurable w.r.t. F5?, however,
according to definition, there is a function f : 25 x 25 — — (—00,00) which is measurable
w.rt. F1 ® Fo and f = f (1 X po-almost surely, and f,,;1 is measurable w.r.t. F, for all
x1 € (2. Moreover it is clear that fgc1 = f;, for almost all x; € (2; with respect to p;.
Therefore f,, is Fy?-measurable for pj-almost all z; € £2;. The iterated integrals of f are
defined to be those of f, and we can show that they are independent of the choice of a version
f.

If f e L2 x 2y, (F1QF)"7H2 11y X o), then we choose f which is F; ® Fo-measurable
such that f = f [1 X pg-a.e., applying the Fubini theorem to f , we thus have the following
refined version of Fubini’s theorem.

Theorem 5.10 (Fubini’s theorem) Let (£2;, F;, pi;) be two o-finite measure spaces. Suppose
821 x 29 — (—00,00) is (Fi @ Fo)"**H2-measurable.

1) If f € LY x 29, (F1 @ Fo)M1%H2 11y X s), then the two iterated integrals of f ewist
and coincide with the integral leXQQ fd(py X po).

_ 2) Conversely, if one of the iterated integral of ]f| is finite, where f = f j X po-a.e. and
[ is Fi ® Fy-measurable, then f € LY(§21 X Oy, (F1 @ Fo)M12H2 11y X ).

6 Some concepts in probability

Let us now set up the probability setting by using the theory of measures developed in the
previous sections.

Let (2, F,P) be a probability space. An F-measurable function X (complex, or valued
in [—o00,00]) on {2 is called a random variable. The concept of random variables may be
generalised to mappings, which may be useful in discussing probability models. In general, if
(£21, F1) and ({25, F3) are two measurable spaces, then a mapping @ : {21 — (25 is measurable
if »71(A) € F; whenever A € F,. Thus a real random variable X : 2 — R is just a
measurable map from (2, F) to (R, B(R)).

If X is integrable or non-negative random variable, then its integral [, X (w)P(dw) is
called the expectation of X, or the mean value of X, denoted by E [X]. We say the expectation
of X exists if X is integrable.

Exercise 6.1 The inclusion-exclusion formula holds:

P(Gz‘b) = D P(A) = Y uP(AL AL+ D P(A;ARA;)

Jj1<J2 J1<j2<Js

.. e Z P(A;, - Aj) +

J1<<Jk

where Aj € F forj =1,2,---

Exercise 6.2 1) Let f : Q — S. Show that f~'(UsAs) = Uaf Y (As) and f7H(A%) =
(fYHA)) for any sets A, A, where o runs over an arbitrary index set.
2) Let f:Q — S where (2, F) and (S,X) are two measurable spaces. Show that

RO {f‘l(A) t A€ E}
is a o-algebra on ), and f is measurable (with respect to F) if and only if f~1(X) C F.
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Exercise 6.3 Let (S,%) be a measurable space, and X, : Q@ — S (a € A) be a family
of functions on Q taking values in S. Then we use o {X, : a € A} to denote the smallest
o-algebra such that each X, is a measurable map from (2, 0{(Xa)aca}) to (S,%).

1) Let Yo = {X;'(A): A€ X and o € A}. Show that

o{Xa:a€ A} =0(%).

2) Let F = 0{X, : o € A}. Show that, if o; € A (j =1,2,---) is a countable subset of
A and A € X2, then
{w: X, (w)€ A foralj=1,2--}

belongs to F. The above event is often written as {Xa]. ceAforj=1,2,--- } :

6.1 Laws, distribution functions

These are basic concepts associated with random variables. Let us begin with the following

Proposition 6.4 Let (2, F) and (S,%) be two measurable spaces, P a measure on (2, F),
and X : £2 — S be a measurable map. Define

uA) = P(XTH(A) =P[X €4
P({w: X(w) € A})

for every A € ¥. Then u is a measure on (S,Y), denoted by P o X, which is called the
distribution of X.

In particular, if X is a random variable on a probability space (£2, F,P) taking values
in R, then P o X~ is a probability measure on (R", B(R")), called the law or called the
distribution of the random variable X. Sometimes we also use pux to denote the distribution
of X.

If X : (2 — R is a real-valued random variable, then its distribution function

F(z) = P(X <ux)
— P({w: X(w) < 2})
mx ((_007‘73]):

is a non-decreasing function on R with valuesin [0, 1]. Then0 < F < 1; F 15 lim,, o, F(z) =
0; lim, o F'(z) = 1; F' is right-continuous:

zlxo

The Lebegue-Stieltjes measure mp associated with the increasing and right-continuous func-
tion F' is the unique measure such that

mp((a,b]) = F(b) — F(a) = P(a < X <b) = px((a,b])

for all @ < b. Since the collection C of all (a,b] (where a < b are reals) is a m-system, according
to the Uniqueness Lemma 2.2, mp = pux, that is, the distribution (law) of a real random
variable X is the Lebesgue-Stieltjes measure associated with the distribution function of X.
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6.2 Independence
Let (2, F,P) be a probability space.

1. Independent events. Recall that, if A, B € F be two events, then A and B are
independent, if
P(ANB) =P(A)P(B). (6.1)

Let

Fa = o{A} ={Q, A, A% 0},
Fg = o{B}={Q,B,B0}.

Then (6.1) implies that
P(ENF)=P(E)P(F), VE € Fu,F € Fg,
and therefore the o-algebras F4 and Fg are independent.

Definition 6.5 1) Let {F, : o € A} be a collection of sub o-algebras of F. Then {F, : a € A}
are independent if for any k € N, and any oy, - ,ar € A such that o; # «; if 1 # j, we

have
P(A; -+ Ap) =P(Ay) - P(Ay), YA € Fopy- Ax € Fa,

2) Let {F,:a € A} be a family of events: F, € F. Then we say {F,:a € A} are
independent if {o(F,) : « € A} are independent.

3) Let { X, : « € A} be a family of random variables. Then {X, : « € A} are independent
if the family of o-algebras {o(X,) : @ € A} are independent.

2. Independence via mw-system. In elementary probability theory, we already give a
definition of independence for random variables. You should show that the above definition
coincides with the one you have learned before. The following Lemma is very useful although
it is very simple and follows a simple application of Lemma 2.2.

Lemma 6.6 Let F,, = o0 {C,} where each C, is a m-system in the sense that
A, B €C, impliesthat ANB € C,.

Then {F, : a € A} are independent if and only if for any k € N, any Fy € Co,, -+ , Fi € Cq,
where aq, - -+, oy are different, we have

P[FN---NF)=P[F]---P[F].

In fact, we can show the equality by induction on k. Consider two measures on F,,
defined by

and

where F; as in the lemma, but fixed, and £ € F,,. The induction assumption and the
condition in the lemma implied that p; = p9 on C,,, hence, by Lemma 2.2, p; = pp on F,
and the proof is complete.

3. Independent random variables.
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Theorem 6.7 Let X1,---, X, -+ be a sequence of real random variables. Then Xq,--- , X, -

are independent if and only if for any k € N, and any x1,--- 2, € R
PXy <z, Xp <o) =P[X; <] P[Xg <.

That is, the joint distribution of Xy, -+, X, is the product of the distribution functions of
the random variables X, 1 < k < n.

This follows from the previous lemma, as Cj the collection of all subsets { X} < x} where
x runs through all reals is a 7w-system, where k =1,2,---.

Therefore, the joint law or distribution of a sequence of independent random variables
(X1, Xg,+ -+, Xp, -+ ) is the product probability measure pq X «-+ X p, X -+, where p, is
the distribution of X,,. In particular, if {X,, : n =1,2,---} is a sequence of independent real
random variables, then its joint law (or called joint distribution) is the product probability
measures of the Lebesgue-Stieltjes measure mp, where F,(z) = P[X,, < 2] is the distribution
function of X,,, n =1,2,---.

Theorem 6.8 Let X be a random variable (valued in a measurable space) on some proba-
bility space. Then there is a sequence of independent identically distributed random variables
{X,, : n € N}, each X,, has the same law as that of X.

Proof. [The proof is not examinable] Let X be a random variable taking its values in a
measurable space (S, G), and let u be the distribution of X. Then p is a probability measure.
Let (Sn,Gn, ptn) = (5,G, 1) (n =1,2,---) and let P = py X -+ X p,, X -+ be the product
probability measure on {2 = [[>2, S,. Define X,, : 2 — S by X,,(w) = w, if w = (w,) € 2
forn =1,2,---. Then X,, are random variables on (£2, F,P) (where F = [[>2, G,,) and by
construction, X, have the common distribution x, and (X,,) are independent. m

6.3 Borel-Cantelli lemma

1. Limiting events, Borel-Cantelli’s first and second lemma. Let A, € F forn =1,2,---.
The event that “A,’s occur infinitely often” (or “infinitely many A, occur”) is given by

limsup A, = ﬁ G A,

n—00
m=1n=m

= {w: w belongs to infinitely many A, } .

The event limsup,,_, . A, is also denoted by {A,, : i.0.}. Similarly, though less important in
applications, the event that “A,, take place eventually” is

ligggjlfAn = G ﬁAn

m=1n=m

= {w:3dN(w) st. we A, foralln > N(w)}

{w : w eventually belongs to A, for large n}.
This event is denoted sometimes by {4, : ev.}. By definition, it is easy to see that
limsup A,, = 1y =00y =<limsuply =1
T PR S (e
while

liminf A, = { lim 1, = 1}.

n—o0 n—oo

24



Theorem 6.9 Let A, € F (wheren =1,2,---).

1) (Borel-Cantelli Lemma, first Borel-Cantelli lemma). If > 77 P(A,) < oo, then
P [limsup,,_,., A,] = 0.

2) (Borel zero-one criterion, second Borel Cantelli lemma). If the events{A,} are inde-
pendent, then Y>> P(A,) = oo if and only if P [limsup,_,. A,] = 1.

Proof. 1) If Y77  P(A,) < oo then lim,, o > ..o, P(A,) =0, and therefore

P[A,: i ]—éLH;OP(UA)gWILiBgOZP(An):O.

n>m n>m

2) If A, are independent, and if Y7 | P(A,) = oo, then

00 N N
P ( ﬂ AZ) = lim P(A:) = lim
—m N—oo N—)oo

n=m n=m

< lim exp( ]P’(An)>
N—roc0

= 0
for every m, where we have used the elementary inequality: 1 —z < e™* for x € [0,1]. Since
{An:io} =] ) 4
m=1n=m

and every (2~ A¢ has probability zero, so that their union {4, : .0} over m = 1,2,---
has zero probability too, hence P[A,, : i.o]=1.m
2. Tail events and tail o-algebra. The limsup A,, and lim inf A,, are examples of so-called

tail events — these events are determined by {A,, 11, Ami1, -+, An, -+ } for every m. For
example
o
limsup A,, = { Z la, = oo}
n—oo —1

for any m. From Borel zero-one criterion above, we can deduce the limiting behavior of
these tail events by combining with the concept of independence. If X, Xo---, X,,, -+ is
a sequence of random variables on (£2, F,PP), then the o-algebra G, = (7, 0 {X; : j > n}
is called the tail o-algebra of {X}},-,. Any element in G, is called a tail event.

Proposition 6.10 (A. Kolomogorov’s 0-1 law) If {X,,} is a sequence of independent ran-
dom variables on (2, F,P), and Goo = (), 0 {X; : j >n}. Then P(A) =0 or 1 for every
A € Go. Inparticular, if { A, } is a sequence of independent events, then P [limsup,,_, . A,] =
0orl.

Proof of 0-1 law. Since o{X,:j <n} and 0{X;:j >n} are independent for any
n = 1,2,---, so that ¢ {X;:j <n} and G, for every n are independent. It follows
that (J~,0{X;:7 <n} and G are independent. If B,C € |J,~, 0{X,:j <n}, then
BnCel,—,0{X;:j<n}aswell, solJ~,o{X;:j<n}isan-system, thus, by Lemma
6.6, the o-algebra

JIUU{XJ:jgn}] =0{X;:j>1}

n=1
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and G, are independent. Since Go, C 0{X; : j > 1}, G and itself are independent. There-
fore, for every A € G, P(A) = P(AN A) = P(A)?, which yields that P(A) = 0 or
P(A) = 1. The last conclusion comes from the fact that limsup, .. A, € G, so that
P [limsup,,_,., An] =0 or 1.

3. Ezample. Suppose (X,) is a sequence of independent random variables (real or
complex), and G, is its tail o-algebra, and suppose {b,} be an increasing sequence of positive
numbers such that b, 1 co. Then the following events

ad X4+ X,
{ lim X, exists } , {Z X,, converges } and { lim 2L +---+ excist }
n=1

n—00 n—00 by,

are all tail events, i.e. belong to G, and thus have probability one or zero.

7 Conditional expectations

1) Definition of Conditional expectations. Suppose ({2, F, ) is a measure space, G C F is
a sub-algebra and p is o-finite on G. If X is a non-negative real random variable which is
o-integrable on G, then there is a G-measurable random variable E# [ X|G], the conditional
expectation of X, which is a unique (up to almost everywhere) function Y such that

1) Y is G-measurable,

2) E# [Y14] = E#[X14] for every A € G.

A random variable Y (either non-negative or integrable) which satisfies conditions 1) and
2) above is called the conditional expectation of a random variable X ;| denoted by E* [X|G].

Therefore, if a random variable X is non-negative and o-integrable on G, then its condi-
tional expectation E# [X|G] exists and unique up to almost everywhere.

In what follows, let us work with a probability space (2, F,P), and G C F is a sub
o-algebra. THe conditional expectation of X (if exists) will be denoted by E [X|G].

2. Conditional expectations for integrable functions. Suppose X is integrable, thus
Xt and X~ are non-negative, F-measurable and integrable, thus E[X*|G] are defined,
G-measurable, and integrable. Therefore both E [X*|G] are finite almost surely, so that

E[X]0] = E [X7|G] - E [X"|]]

is integrable. E[X|G] is G-measurable and E[X : A] = E [E (X|G) : A] for every A € G, so
that E [X|G] is the conditional expectation of X.

If X is F-measurable and non-negative, then for each n, X An is bounded and X An 1 f.
Thus E [X An|G] is defined for each n, and E[X A n|G] is increasing, its limit Y exists. Y
is G-measurable, and for every A € G, according to MCT, we have E[X : A| =E[Y : 4], so
that Y is the conditional expectation of X, denoted by E [X|G].

3. Ezample. Let ({2, F,P) be a probability space, and A € F with 0 < P(A) < 1. Let
G=o0(A). If X € LY, F,P) then
E[X : A]
P(A)

E[X : A

E[X|G] = e

]_A+ ]_Ac.

In general, if {A;} is a countable partition of (2, i.e. U;A; = 2, {A;} are disjoint and
P(A;) > 0, then
“E[X: Al
EIX|G] =)~ 14,
Z P(4;)

J=1
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where G =0 {A;:j=1,2,---}.

4. Notations. The following convention on conditional expectations will be assumed. If
Z is a random variable, then the conditional expectation of X given Z, denoted by E [X|Z],
is defined to be the conditional expectation of X given o(Z). If Z3,--- , Z, is a finite family
of random variables, then we define

E[X|Z, -+, Z,)) =E[X|o(Z1, -, Z,)].
In general, if {Z,}aca is a family of random variables, then

E[X|Zaia € Al = E[X]o({Za}acr)] -

5. Exzample. Let X and Z be two random variables on a probability space ({2, F,P) with
continuous joint probability density function p(z, 2), i.e.

P{(X,Z) € D} //D p(@, 2)dud:.

Then 2d
L0012 - S DS AE

where f is Borel measurable, non-negative or/and f(X) is integrable. In fact, formally

PX =x,7=z)
P(Z =z)
p(z, 2)
Jep(z, z)dz

PX=zx|Z=2% =

6. Properties of the conditional expectations.

6.1) E[E[X|G]] = E(X), i.e. the expectation of conditional expectation doesn’t change.
If X is integrable, and X is G-measurable, then E[X|G] = X. If Z is G-measurable,
thenE [ZX|G] = ZE[X|G].

6.2) X — E(X]G) is linear, additive and positive.

6.3) Convergence Theorems. 6.3.1) MCT for conditional expectations: 1If 0 < X, 7
X then E[X,|G] 1 E[X]|G]. 8.8.2) Fatou’s Lemma: If X, > 0, then E [liminf X, |G] <
liminf E [X,,|G)]. 8.3.3) Dominated Convergence: If | X, | < Z for some Z € L'(£2, F,P) and
lim X,, = X, then E [X,,|G] = E [X|G].

6.4) If Go C Gy C F, then E{E [X|Gi]|G2} = E[X|Gs] (this is called the power law for

conditional expectations).

7. Jensen’s inequality for conditional expectations. If ¢ is convex, and both X and ¢(X)
are integrable, then
v (E[X|G]) < E[p(X)[]]

almost surely.
Let us prove the Jensen inequality. Recall that ¢ is convex on R if

e(As + (1= \)t) < Ap(s) + (1 — N)e(t)
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for all s,t € R and A € [0, 1], which is equivalent to that

pu) —p(s) _ #(t) — p(u)
U—3S - t—u

for any s < u <t (with u = As 4+ (1 — A)t). In particular, the right-derivative

p(t) —pls) _ . o) —ols)

tls t—s t>s t—s
exists. Similarly
. p(t) —p(s) p(t) — p(s)
F() = tim 2D =) ) =)
e o S

that is

for s < t. While if s > ¢, then

o(s) — ()

L2 > el 2 ¢

we thus also have
o(s) = o(t) + ¢_(t)(s — ).
Therefore, for a convex function ¢, we have
() > p(t) + @' (t)(s —t) for all s. (7.1)
Applying (7.1) t = E[X]|G] and s = X, to obtain
p(X) = p(E[X]G]) + ¢_(E[X|G])(X — E[X]|]).

Now t — ¢’ (t) is increasing, so that it is Borel measurable, thus ¢’ (E [X|G]) is G-measurable.
Taking conditional expectation we deduce that

E[p(X)|G] > p(B[X|G]) + E [¢_ (E[X|g]) (X - E[X|F])|]]

¥
p(E[X]G]) + ¢ (E[XIG)E[(X - E[X]G])|F]
p(E[X]G]).

8 Uniform integrability

1. Definition of uniform integrability. Let ({2, F,P) be a probability space. The concept of
uniform integrability for a family of integrable functions is used to handle the convergence in
LY(£2). In spirit, it is very close to that of uniform convergence, uniform continuity etc. that
you have learned in the analysis course. If f is integrable, then f is finite almost everywhere.
Hence |f|1qfj<ny T |f] almost everywhere as N 1 oo, thus by the Monotone Convergence

Theorem [, | f|1{51<n1dP T [ | f|dP, so that limy_, f{\fIZN} |f|dP = 0.
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Definition 8.1 Let A be a family of integrable functions on (£2,F,u). A is uniformly

integrable if
lim sup/ £]dP =0 .
N=00 ced J{jel=ny

That is, E[|€] : || > N] tends to zero uniformly on A as N — oo.

2. Some simple properties.
2.1) Any finite family of integrable random variables is uniformly integrable.

2.2) Suppose A C L'(£2) and there is n € L'(£2) such that |£| < 7 for every £ € A, then
A is uniformly integrable.

2.83) A C LP(£2) such that supgc 4 [, [§[PdP < oo for some p > 1 [which is equivalent to
that A is bounded in LP(£2)], then A is uniformly integrable. In fact,

1
sup [ < swp [P
EeA J{g|>N} £eA J{l¢>N}

sup E [[£[P] — 0.
o S E ()

<

Theorem 8.2 Let A C L'(2). Then A is uniformly integrable if and only if

(a) A is a bounded subset of L'(12), that is, supge 4 E[|€]] < oo.

(b) For any € > 0 there is a § > 0 such that sup.c 4 E[|{| : E] < & whenever E € F with
u(E) <6.

Proof. Suppose A is uniformly integrable. For any £ € F and N > 0

/ €ldP = / €dP + / €|dP
E En{|¢|]<N} En{|¢|>N}

< N +/ €[dP .
{l¢I>N}

Given ¢ > 0, choose N > 0 such that sup.c 4 E [[£] : [{| > N] < /2. Thensup,c4E[|{] : E] <
N +¢/2 for any E € F. Thusd = ¢/(4N) will do.

Conversely, suppose 1) and 2) are satisfied. Let 3 = supgc 4 E[|¢|]. Then, by the Markov
inequality, P{|¢{| > N} < B/N for any N > 0. For any £ > 0, there is a § > 0 such that the
inequality in 2) holds. Let N = /d. Then P{|¢{| > N} < § so that E[|¢] : |{] > N] < ¢ for
any { € A =

Corollary 8.3 Suppose A C L'(2) and n € L*(2) such that E[1p|&|]] < E[lp|n|] for any
D e F and £ € A. Then A is uniformly integrable.

3. L'-convergence and uniform integrability. The following theorem demonstrates the
importance of uniform integrability.

Theorem 8.4 Let f, be a sequence of integrable functions on (£2,F,P). Then f, — f in
LY(2) as n — oo:

1fo = Al =E[lfn =1 =0 as n— o0,

if and only if {f.} is uniformly integrable and f, — f in measure as n — oc.
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Proof. Necessity. For any ¢ > 0 there is a natural number m such that ||f, — f||L1) <
e/2 for all n > m. Therefore, for every measurable subset F,

SUP/Intle’S/|f|dP+sup/ fuldP+ &
n JE E k<m JE 2

In particular
€
SUDE [|fn]] < E[If]] + sup B[ fil] + 3

i.e. {f,:n>1}is bounded in L'(§2). Moreover, since f, fi,--- , fm belong to L', so that
there is 0 > 0 such that, if P(F) < §, then

i £
IS ATES

Therefore sup,, [, |f»|dP < ¢ as long as u(FE) < 6.

Sufficiency. By Fatou’s lemma [, | f|dP < sup, [, |fa|dP, so that f € L'(£2). Therefore
{fn — f :n > 1} is uniformly integrable, thus, by Theorem 8.2, for any € > 0 there is § > 0
such that [, |f, — f|dP < e for any F € F satisfying that P(E) < 4. Since f,, — f in
probability, there is an N > 0 such that P (| X,, — X| > ¢) < ¢ for any n > N. Therefore

/Ifn—fIdIP’ < / fo— f1AP+ B {f, — f <}
Q {|IXn—X|>c}

< e+eP{lfn— fl<e}

< 2e.

for n > N. By definition, f, — f in L'({2). m

9 DMartingales in discrete-time

In the 1950’s, Doob wrote up a systemic account on the theory of martingales in his book
“Stochastic Processes”. Doob’s book, although about 60 years old, remains very useful to
researchers and still in print. The fundamental results in the martingale theory (in the
restricted sense) include the optional stopping theorem, martingale inequalities and the
martingale convergence theorem.

This chapter is devoted to the theory of martingales in discrete-time. We will only present
the basic aspects of this subject with the emphasis on the use of filtrations (information
flows), stopping times (random times) and sample paths of stochastic sequences.

In probability theory, we study probabilistic properties of random variables: properties
determined by the distributions of random variables. It can be a very subtle problem to
give a good description of laws of random variables taking values in infinite dimensional
spaces. The classical probability deals with sequences of random variables, such as the
law of large numbers, central limit theorems etc., typically starts with the assumption of
independence among elements in the sequence. When we consider stochastic processes, that
is, parametrized families of random variables, we will be interested in relationships between
elements in the family and in particular properties determined by their (finite dimensional)
joint distributions.

The basic concepts in the theory of martingales become natural and apparent as we will
see, if we are allowed ourselves to use a family of different oalgebras on the same sample space
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instead one fixed collection of events, the technical used to prove deep limiting theorems,
which were mastered only by few experts in the past, become systemic tools as long as we
accept the notion of random times. It took some years for the probability society to digest
these two fundamental ideas, and it took a generation to rewrite our textbooks on probability
theory which introduce the basic theory of martingales from the very beginning.

Let us begin with the concept of filtrations (which model flows of information).

Let ({2, F,P) be a probability space. Let Z, = {0,1,---} denote the ordered set of
non-negative integers, and Z, = Z, U {oo}.

Definition 9.1 A family (]—"n)nez+ of sub oalgebras of F is called a filtration, if F,, C F,i1
for everyn € Z. .

A probability space (2, F,P) together with a filtration (F,,)
ability space, denoted by (2, F,,F,P).

18 called a filtered prob-

nely

It is useful to consider F,, as the information available to us up to time n.

Given a sequence of random variables X = (X,), ., on the probability space ({2, F,P),
for every n, let FX be the smallest o-algebra with respect to which Xg, ---, X,, are mea-
surable, ie. FX = o{X, : m < n}. (FYX) is called the filtration generated by X. A
sequence of random variables X = (Xn)nEZ+ can be considered as the state of some random
process evolving in discrete time n = 0, 1,2, ---. For example the value of the share price
of a particular company at the end of each trading day. F-X is the information about this
random evolution up to time n — that is, the history of the price process. In particular, each
X, is measurable with respect to F.', i.e. X, € F.X, so that X = (X,,),, is adapted to
the filtration (.7-"5( ), which means that as long as we reach time n, then we know the value
taken by the random variable X, at that time. Here we abuse the system of notations:
which doesn’t mean X, is an element of F.X, but {X,, € B} € F.X for every Borel set B,
as a convention, here {X,, € B} is the abbreviation of {w € 2 : X,,(w) € B}, and the same
convention applies to similar situations.

In stochastic analysis, a stochastic process is any parametrized family of random variables
valued in an arbitrary (measurable) state space. In this book, however, by a stochastic process
we will mean a sequence of random variables (X,,), on a filtered probability space. The name
“stochastic process” (stochastic derives from the Greek for random) is used to underline the
fact we are more concerned with the behavior of a random sequence evolving with time n,
and we are not so interested in the properties of the individual random variables, although
naturally the distribution of each random variable X, will contribute to the global and
limiting behavior of the whole sequence (X,,).

Definition 9.2 1) A sequence (X,),cz, of random variables on (£2,F,P) is adapted to a
filtration (F,,), if for every n € Z,, X, is Fn-measurable. In this case we say (X,) is
an adapted sequence, or adapted process (with respect to (F,)).

2) If Xo € Fo and if X, is F,_1-measurable for any n € N | then we say (X,,) is
predictable or previsible.

TZEZ+

We may think that the sample point w € (2 is chosen by the fates and over time the
choice is revealed to us through the values taken by the process X,,. Thus at time n the
o-algebra JF,, contains all those sets which can be resolved, i.e. we know if w is in them or
not. That is the meaning of adaptness

For a predictable sequence (X,,), you know X, before the present time n, so it is previsible
and you can certainly predict it!
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Another important concept, stopping times [which are random times|, allows us to artic-
ulate the idea of making a decision about when to stop a process based on the observations of
its past behavior. However stopping times have far-reaching applications than its superficial
definition. The concept of stopping times really synthesize many important technical like
random partitions, localizations etc.

Definition 9.3 Let (]—"n)nEZJr be a filtration on (2, F,P). A measurable function T : £ —
{0,1,2,--+ j00} [thus it may take value oo/ is called a stopping time (with respect to (F,);
if one wishes to emphasize the underlying filtration in question), if {T = n} € F, for every
n.

A stopping time 7" is a random variable and{T" = oo} € F. Both finite constant time
T = n and the infinity time 7' = oo are stopping times.
Let Foo =0 {Fn:n€Z,} CF. If Tis a stopping time, then

{T=o0c} =0\ | J{T =n} = [T >n}

belongs to F.,, and for every n

{Tsn}—ﬁ{T—k}efn

and
{T >n}={T <n}eF,

for every n € Z,..

In the literature prior to the French School establishing the general theory of stochastic
processes, stopping times had been called Markov times (for example, see K. Ito and H. P.
J. McKean: Diffusion Processes and Their sample Paths. Berlin, Springer-Verlag 1965).

Example 9.4 Let (Xn)nEZ+ be an adapted process on a filtered probability space (2, F, Fp,P),
and B € B(R). Then the first time T at which the process (X,) hits B:

nel4

T=inf{n>0:X, € B}
is a stopping time with respect to (F,). More precisely, T is a random variable defined by
T(w)=1inf{n >0: X,(w) e B} Ywe

together with the convention that inf () = co. Hence

n—1

{T =n}=(){Xy€B}n{X, €B}.

Since (X,,) is adapted, therefore {X), € B°} € Fj, and {X,, € B} € F,, so that {T' =n} €
Fn. T is a stopping time, called a hitting time.

Hitting times are essentially the only stopping times we are interested in.
Given a stopping time T on ({2, F,,, F,P), the o-algebra Fr representing the information
available up to the random time 7' is the following o-algebra

Fr={A€Fp:st. AnN{T <n}eF,¥n=012-}.
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Exercise 9.5 If T is a stopping time on (2, F, F,,P), then Fr is a o-algebra. If T = n is
a constant time, then Fr = F,.

Theorem 9.6 Let (Xn)n€Z+ be an adapted random sequence on (2, F,, F,P), and T be a
stopping time with respect to (F,). Define

XTl{T<oo}(UJ) = { ng(w)(W); ZZJJC[YI:((C:))) i(;(;,

Then Xrlircooy is Fr-measurable [In particular Xplipcos) 45 a random variable.]
Proof. Since
{XTl{T<oo} < (1} = {XT <aTl< OO}

= U{nga,T:k}U{Oga,T:oo}

k=0

SO {XTl{T<oo}} € Fr. Foranyn € Z

{Xrlgrecy <a} N {T <n} = [ J{Xk <a,T =k}

k=0

belongs to F,, as { Xy < a}N{T =k} € Fy, k=0,1,--- ,n. Therefore {XTl{T<Oo} < a} €
Fr, which completes the proof. m

Exercise 9.7 Let (X,,)
distribution:

neZy be a sequence of independent random wvariables with identical

PX,=1)=p, PX,=0)=1-p
where 0 < p < 1. Let (F,) be the filtration generated by (X,,), and

Ty = inf{n>1:X,=1} ,
Tor = nf{T>T,:X,=1} if n>1.

T, is the time that the n-th time 1 occurs in the sequence. Then each T}, is a stopping time,
and the sequence
T17T2 _Tlu"' 7Tn _Tn—h”'

is a sequence of independent, identically distributed (with a geometric distribution).

We now introduce the definition of a martingale. The word martingale originated in gam-
bling, describing the double-or-quits strategy or part of a horse’s harness. Mathematically
it encapsulates the idea of a fair game. That is, whatever information from the past history
of the game you use in order to determine your betting strategy, your expected return from
playing the game is the same as your current fortune.

Definition 9.8 Let X = (Xn)n€Z+ be an adapted process on a filtered probability space
(2, F, F,P). Suppose each X, is integrable.
1) X is a martingale, if
E [Xn+1|fn] = Xn a.s. ¥Yn € Z+.
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2) X is a super-martingale if

E[ X1l Fn) <X, as. VneZ,.
3) X is a sub-martingale if

E[Xp1|Fo] > X, as YneZ,.

Exercise 9.9 1) Prove that, an adapted, integrable random sequence (X,,) is a martingale
if and only if
E[ X Fu] = X, as. Ym > n.

State a version of the statement for a super- or sub-martingale.

2) If (X,) is a martingale, then E[X,] = E[X,] for any n.

3) If (X,) is a super-martingale, then n — E[X,] is decreasing, while n — E[X,] is
increasing if (X,) is a sub-martingale.

Example 9.10 In these examples we are given a filtered probability space (2, F, F,,P).

1) Martingale by projection. Let & € LY(Q, F,P) be an integrable random variable [i.e.
E¢]] < oo/, and X,, = E[§|F,]. Then (X,,) is a martingale.

2) Random walk. Let (ﬁn)n€Z+ be a sequence of adapted and integrable random variables.
Suppose &,1 and F,, are independent [i.e. o {11} and F, are independent]. An example is
that {&€,} is a sequence of independent random variables on (£2, F,P) and F,, = o{&, : m <
n}. Let X,, =Y r_ &k be the partial sum sequence. Then (X,,) is a martingale if E[§,] =0
for any n, is a super-martingale if E[£,] <0, and a sub-martingale if E[£,] > 0 for any n.

3) Likelihood ratios. Let f,g be two probability density functions, with support on the
whole of R. Let (X,,) be a sequence of independent, identically distributed random variables
from the distribution with probability density function f. The likelihood ratio is given by

R — 9(X1)g(Xz) - .. g(Xa)
T fX)f(X) (X

with Ry = 1. Then (R,,) is a martingale with respect to the filtration generated by X .

4) Polya’s Urn. At time t = 0 an urn contains 1 red and 1 black ball. At each time a ball
1s chosen randomly from the urn and it is then replaced along with another ball of the same
color. Thus at the time of the n-th draw there are n+ 2 balls in the urn and we let B,, be the
number of black balls. Then M, = B,/(n+ 2) is a martingale with respect to the filtration
generated by B,.

Example 9.11 [Martingale transform, discrete stochastic integral/ If (H,,) is a predictable
process and (X,,) is a martingale, then

(H.X), = in(Xk — Xj1), (HX)o=0
k=1

s a martingale.

Exercise 9.12 1) If (X,,) and (Y,) are two martingales (resp. super-martingale), so is
(X, +Y5).

2) Show that (X, AY,) is a super-martingale, where (X,,) and (Y,) are two martingales.
In fact, since Z,, = min{X,,Y,} so that
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and also

E [Zn+1|}~n} S ]E [Yn+1|]:n} S Yn
hence B [Z, 11| Fn] < Zn, thus Z is also a super-martingale.

Recall Jensen’s inequality for conditional expectation: if ¢ : R — R is a convex function,
& (&) e LY (N2, F,P), and G is a sub o-field of F, then

p(E[E]G]) < Ep(€)|g].

Functions (£Int) 1(1,5)(t), 7 = t1(0,c) and [¢|? (for p > 1) are examples of convex functions.

Theorem 9.13 1) Let (X,,) be a martingale, and ¢ : R — R be a convex function. Suppose
©(X,,) are integrable for every n. Then {¢(X,)} is a sub-martingale.

2) Let (X,) be a sub-martingale, and ¢ : R — R be increasing and conver. Suppose
©(X,,) are integrable for every n, then {o(X,)} is a sub-martingale.

Proof. 1) In fact, applying Jensen’s inequality

p(Xn) = ¢ (E[Xnu|Fn]) (martingale property)
< Elp(Xng1)|Fa]  (Jensen’s inequality).

which proved 1). The proof of 2) is similar. m

tT = max{t,0} =t~ is increasing and convex, thus, if (X,) is a sub-martingale, so
is X, = max {X,,0}. If X = (X,,) is a super-martingale, then —X,, is a sub-martingale, so
that X~ = max{—X,,0} is a sub-martingale. That is, the positive part of a sub-martingale
is again a sub-martingale, while the negative part of a super-martingale is however a sub-
martingale. Therefore, if X,, is a martingale, then both its positive part and its negative
part are sub-martingales, so is its absolute value | X,| = X, + X, .

10 Martingale inequalities

In this section we prove the fundamental martingale inequalities.
We first establish Doob’s optional sampling theorem which shows that the (super-, sub-
Jmartingale property holds at bounded stopping times.

Theorem 10.1 [Doob’s optional stopping theorem/ Let (X,,) be a martingale (resp. super-
martingale), and S < T two bounded stopping times. Then E[Xr|Fs] = Xg (resp.
E [ X7|Fs] < Xg).

Proof. [The proof is not examinable.] By Theorem 9.6, X1 € Fr, Xg € Fg. Suppose S
and T are bounded above by NV, then

N

E(1Xrl] = DB [1X[1er=p] < D EX],

J=0

so Xr is integrable. Similarly Xg is integrable too.

We have to prove that E[Xp : A] < E[Xg : A] for every A € Fg.

Let A € Fg. Since S and T are stopping times, AN{S = j} € F;, {T > j} € F; for
7=0,---, N —1, so that

A =An{S=7}n{T>j}eF
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and AN{S < T} = U;‘V:o A, is a disjoint decomposition.
].) If 0 < T—-5 < 1, then XT = Xj+1 and XS = Xj on Aj fOI'j: 0, ,N— 1, and
therefore

=2

-1
]E[XS—XTA]:E[XS—XTAﬂ{S<T}]: ]E[Xj—Xj+1IAj]

J

I
=)

However, X is a super-martingale and A; € F;, so that E[X;;; : A;] < E[X;: A;]. That
is, E[X; — Xj41: A;] >0for j=0,--- ,N —1, and therefore E [Xg — X7 : A] > 0, which is
equivalent to that E[Xg: A] > E[Xp : A] for every A € Fg.

2) In general, let R; = T A (S +j), j = 1,---,n. Then R; are stopping times, and
S<R <---<R,=T. Moreover Ry =S <land Rj;; —R; <1for1<j<N-—1. Let
A€ Fs. Then A € Fg, as S < R;. Therefore by applying the first case to R; we obtain

E[Xs: A >E[Xg, : Al >--- > E[Xr: 4]

so that E [14Xs] > E[14X7]. The proof is complete. m
Let us first deduce several easy but important consequences from Doob’s optional stop-
ping theorem.

Corollary 10.2 Let X = (X,,) be a super-martingale.

1) If T > S are two bounded stopping times, then E [X7] < E[Xg].

2) If T is a stopping time, then E[Xrp,] < E[Xram] for any n > m, where Xrp, = Xr
on {T <n} and Xpp, = X, on {T > n}.

Stmilar conclusions hold for sub-martingales.

Corollary 10.3 If X = (X,)) is a super-martingale, and T is a stopping time, then
E[|[Xrnn|] SE[Xo] +2E [X,] Vn€Z,.
If in addition sup,, E [| X,,|] < oo, then
E [| X7l {r<oey] < 3sup E[1.X[].
Proof. According to Theorem 10.1, since (X, ) is a sub-martingale, together the follow-

ing equality
|XT/\TL| = X;:/\n + XE/\n = XT/\n + 2‘XVJT/\n

we have

E HXT/\nH = E [XT/\n] + 2K [X:F/\n]
< E[Xo] +2E [X, ]

which is the first inequality. It follows that

E [| Xranllir<o0}] < 3supE[|X,[] (10.1)

for every n. Since
|XT|1{T<QO} = nhj{)lo |XT/\n|1{T<oo}
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and applying Fatou’s lemma to | Xpan|l{r<oc}, We obtain

By :
E[|Xrl1(r<o] = E | lim | Xr|lgren | < 1minf E [|Xpun/Liz<oe)] < 35upE[|X, ]

where the last inequality follows from (10.1). m

Theorem 10.4 (Stopped super-martingales are super-martingales) Suppose X = (X,,) is a
super-martingale, and suppose T is a stopping time, then the stopped process XT = (Xran)
s again a super-martingale. A similar result holds for martingales and sub-martingales.

Proof. According to the previous corollary, we know that Xr,, is integrable for every
ne 7. For n > m we have

E [ XranlFm] = Y B [Xelgr—iy | Fin] + B [XzpnLirsmy | Fon]
k=0

= ZXkl{T:k} +E [XT/\nl{T>m}’fm]
k=0

Z klir=ky + LirsmE |:XT/\n1{T>m}’F ] (10.2)
k=

where we have used the fact that {T" > m} € F,,. Let S = Tl{rsmy + 00l{r<my. Then S is
a stopping time. In fact, if & < m, then {S =k} = 0, and if &k > m, then

{S=k}={T =k} {T >m} € Fi
as {T > m} € F,, C Fi. By definition S An > m, and
Xsan = XT/\nl{T>m} + an{Tgm}-

Hence, by applying Doob’s stoping theorem to X and bounded stopping times S An > m
we obtain

that is
E |:XT/\n1{T>m} + an{TSm}’fm] < Xn.
Since {T' < m} € F,, it follows that

E [Xranlirsmy|Fn] + Lirem B [Xol Fin] < X
Thus, by multiplying both sides by 1{7~,,;, we have
Lirsm}E [ Xranlirsmy | Fn] < Xonlirsmy- (10.3)
Putting together (10.2) with (10.3) we obtain that

E [X7an|Fn] Z Xielir=ry + Xonliro>my = X1am
k—0

which means that X7 is again a super-martingale. m
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Corollary 10.5 Let T be a finite stopping time.

1) If X = (X,,) is a non-negative super-martingale, then B [X7] < E[X].

2) If X = (X,) is a super-martingale, and there is an integrable random variable & such
that | X,,| < & almost everywhere on (2 for all n, then E [X7] < E[Xj].

Proof. 1) In fact, since T is finite, X715, — X1 as n — co. By Fatou’s lemma we have

E[Xz] < liminf E [Xpan] < E[Xo]
n—oo
which completes the proof.
2) This time we apply the Dominated Convergence Theorem to { X7, } to obtain E [Xr] =
hmn_wo E [XT/\n]- |

Corollary 10.6 Let T be a finite stopping time, and X = (X,,) be a super-martingale. Let
§ =sup,_j .. | Xn—Xn_1]. Suppose T is integrable, i.e. E[{T] < oo, then E [X7] < E[Xo].
In particular, if the sequence | X,, — X,,_1| < L for every n, where L is a constant, and if T
is an integrable stopping time, then E [X7] < E[Xj].

Proof. For every n, we have

nAT
| Xranl = [Xo+ ) (Xi — Xio1)| < [ Xo| +£T.
k=1

Since | Xo| 4+ £T is integrable, and X, — Xo almost everywhere, by Lebesgue’s Dominated
Convergence Theorem, E [X7| = lim,, o E [X7,,] which yields the conclusion. m

In order to establish a general result such as 2) in Corollary 10.5, the concept of uniform
integrability may be useful. For example, we have the following

Corollary 10.7 Let T be a finite stopping time, and X = (X,) be a super-martingale.
Suppose {Xrpn :n=0,1,2,---} is uniformly integrable, then E[Xr] < E[X].

The proof is eacatly the same as that of 2), Corollary 10.5. In fact, since Xy, — Xr
and { X7, } is uniformly integrable, by Theorem 8.4, E [X7] = lim,, o E [X7n]-
It is therefore useful to introduce the following definition.

Definition 10.8 Let X = (X, )nez, be an adapted sequence of real random variables on a
filtred probability space (2, F, F,,P). Let T denote the collection of all finite (F,,)-stopping
times. Then we say X = (X,) is of class D, if the family {Xr:T € T} is uniformly
integrable.

Next we derive the main martingale inequalities, as applications of Doob’s optional stop-
ping theorem. Let us introduce a notation first.

If (X)nez, is a sequence of real random variables on (§2, F,PP), for each n € Z,, set
X (w) = maxg<, Xg(w) for w € Q. Then (X}) is called the sequence of running maximal of
(X,). It is obvious that each X is a random variable. If (X,,) ez, is an adapted sequence
on the filtered space ({2, F, F,,P), then so is its running maximal.
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Theorem 10.9 [Doob’s maximal inequality/ 1) If Y = (Y,,) is a sub-martingale, then

1
PY; 2N < {E[Y, ¥ 2 N (10.4)

for any A > 0. Since |Y,| is also a sub-martingale, so that

1
P [Sup|Yk| > )\} < -E {|Yn| csup Vi > A .
A k<n

k<n

2) If X = (X,,) is a super-martingale, then

PIX, > A < S (E[Xo] - E[X, : X, < A])

> =

forany A >0, ne€Z,, and

P {sup | X%| > )\} < - (E[Xo] +2E [X,]) (10.5)

k<n

> =

for all X > 0, where X, = max {0, —X,,} which is a sub-martingale.

Proof. [The proof is not examinable.] We give two proofs of 1). Let R = inf {k > 0: Y, > A}
and T'= R An. Then T" < n, and we have the following facts: Yz > A on {R < oo},
{Y > A} C{Yr > A} and {Y,F < A} C {T"=n}. Apply Doob’s stopping theorem to n > T
to obtain

E[Y,| >E[Ys] =E[Yr: V> N +E[Yr: Y <)
>AP[Y > N +E[Y,: V< ).

Rearrange the inequality to deduce that

1
PIY; 2 A < {E[Ya: ¥y 2 Al
Here is a proof without using the notion of stopping times but partition techniques. Let
E; ={Y, <Xfor k<j—1Y; > A} where j =0,1,--- ,n. Then {Y,) > A\} = U;E}, E; are
disjoint, and E; C F;. Therefore

i} n n 1
Pl > A = 3P < 3 SB[ 1 )
=0 =0
< %]E Y :Ej]=SE[Y, : Y >\
7=0

2) Let R =inf{k>0: X, > A} and T = R An. Applying Doob’s optional theorem to
stopping times 7" and S = 0, one has

> \P [supXkZ)\] +E[X, : X} <A

k<n
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To prove the last estimate, we combine 1) with the first inequality of 2). Since X = (X,,)
is a super-martingale, applying 1) to the sub-martingale (—X,,) we have

P |:]£I<1f Xk < —)\} =P [Sup(—Xk) > )\1

k<n
1
<E|-X, :i < -
_)\E{ X"',ing’“— )\}
together with the first inequality of 2) we deduce that

P {sup]Xk] > )\] =P {supXk >\, or ’1r<1f X < —)\}

k<n k<n

<P {supXk > )\} +P bgf X, < —)\}

k<n
1 1 1
< = — X< —E |- s < —
< {E[X)] - E[X, Xn_A]UE{ X, inf X < )
1
SX(]E[XO]JrQE (X, ])

which is the last inequality. =
The following result plays a key role in proving the strong law of large numbers, which a
strong version of the elementary Markov inequality.

Theorem 10.10 [Kolmogorov’s inequality/ Let (X,,) be a martingale and Xy € L*(02, F,P)
where N is a positive integer. Then for any A > 0

1
P {sup X, > A} < LE[X3). (10.6)
k<N
Proof. By Jensen’s inequality, for any k¥ < N
E [X7] = E (E[Xn|F])* <E[X3] < oo
[That is (X,,) is a square-integrable martingale up to N|. Therefore (X?) (k=0,1,---,N)
is a sub-martingale (up to time N). Applying Doob’s maximal inequality one obtains
1 1
P X >N < =E [ X2 :supXp > M| < SE[X?
gt =] < B gtz < el

foralln < N.m

Example 10.11 Let (X,,) be independent and square integrable. Then S, = > _ (X — pu)
where p = E[X}] is a martingale. Moreover

n

Z(Xk - Mk)] = ZUI%

k=0

E[S2] =K

where o = var(Xy). According to Kolmogorov’s inequality

for any A > 0.
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Doob’s maximal inequality is a tail estimate for the distribution of the running maximum
of a martingale, thus can be used to estimate the LP-norm, which is the context of Doob’s
LP-inequality.

Let us begin with an elementary lemma which follows from Fubini’s theorem directly.

Lemma 10.12 Suppose p is right-continuous, increasing on (0,00) and p(0+) = 0, and &
is a non-negative random variable on ({2, F,IP), then

p(€) = p(€) — p(04) = /(Oﬂ my(d)  on {€ > 0}

E@@w5>OJ=:ELLﬂmAww5>o}:ELLm;&qw%wn

= [ enma= [ Pl A pan),
Qx(0,00) (0,00)

where m,(d\) is the Lebesgue-Stieltjes measure defined by p on (0,00), so that m,((s,t]) =
p(t) — p(s) for anyt > s > 0.

Theorem 10.13 [Doob’s LP-inequality/ 1) If (X,,) is a non-negative sub-martingale, then,
for anyp > 1

Bl < (2) Bl (107

2) If (X)) is a martingale, then, for any p > 1,

e [maxper] < (25 Elp (105)
The last inequality may be reformulated in terms of the LP-norm as
X0, < gl Xall,
where i + % =1, |||l denotes the LP-norm, and X, = maxy<, Xy, is the running mazimum.

Proof. If (X,,) is a martingale, then (|X,|) is a sub-martingale, so (10.8) follows from
(10.7). Let us prove the first conclusion. According to Doob’s maximal inequality (10.4),

1
PIX*>)\<—
Xz A<

E[X.; X5, > Al
If p is right continuous, increasing and p(0+) =

0 on (0,00), then, by Lemma 10.12

E[p(X?): X! > 0] =E Mo mo(d\): X2 >0

7X';l7i)

_ / PX* > Alm,(d))
(0,00)

1
< / LEIX, : X7 > AJm,(d\)
(0.00) A

1
—/ {—/ XndIP’} m,(d)
(000) LA J(xzzn)
1
_E [Xn (/ —mp(d)\)) X750
(0.5 A
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Choosing p(\) = M, then p'(\) = pAP~!, we obtain

*|p — *|p . * 1 . *
B[ X7 = E[[XP: X* > 0] SE[X,L (/MM (d/\)) .Xn>0]
ZP—E[ "
< (B X, )7 (BIX;P)a

for 110 + % =1, here the last inequality we have used the Holder inequality

[ Vtsld <1171, s,
Q

if p>1and % + % = 1. Rearranging the inequality above to obtain the last inequality in 2).
]

Doob’s LP-inequality does not apply to the case p = 1, as in this case ¢ = oo which gives
the infinity upper bound. That is to say, the L'-norm of the terminal value of a martingale
does not in general control the L!'-norm of its running maximal.

Exercise 10.14 Prove that logx < z/e for all x > 0, hence prove that

b
alog™b<alogha+ -. (10.9)
e
Consider h(t) = logt — £ fort > 0. Then h(t) = —oo ast | 0 ort 1 oo, so h achieves
its mazimum in (0, 00). Since W(t) =1 — 1 has unique root t = e, e is the mazimum of h.
Therefore h(t) < h( ) =0 for allt >0, that is, logt < L.
Now

log* (at) = max{0, log(at)} = max{0,loga + logt}
t t
< max{0,10g+a + —} =log"a+ -,
e e
Setting t = g we obtain the inequality (10.9).

Theorem 10.15 If (X,,) is a non-negative sub-martingale, then

€
E [r}gléaic Xk] <3 (14 E [X,log" X,]). (10.10)

e —

Proof. [The proof is not examinable.] We have seen from the proof of Doob’s LP-
inequality

1
E[p(X?): X' > 0] <E [Xn/ Lo (@) x> 0.
(0,X}]

where now p(\) = (A—1)" which is a continuous increasing function with support on [1, c0).
Therefore

Ep(X)]=E[p(X}): X >0 < E{Xn/ XdA:X;zl]
1
= E[X,log" X;]

< E[X.log" X,] + “E[X7].
€

n
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where we have used the inequality

*

X
Xplog X < X, log" X,, + 2

On the other hand

E[X } X*]-{X*>1}} +E[X*]_{X*<1}]
p(X )1{X*>1ﬂ +E [1xzsn] +E [ X5 lix <]

(X)) +

Together with the previous estimate one thus deduces that

E
E
E

IA A

E[X;] <1+4+E[X,log" X,] +

which yields the L!-estimate. m

11 The martingale convergence theorem

An important field in the probability theory is to study the asymptotic behavior of sequences
of random variables. For example, we are interested in whether a sequence {X,, : n > 0}
converges or not as n — 0o. One of the powerful tools to study the convergence of random
sequences is the concept of up-crossing numbers through intervals by a random sequence.

Suppose (a,) is a sequence of real numbers, then lim,_,, a, exists (as a real number),
lim, ,o a, = oo or lim, ., a, = —oo, if and only if liminfa, = limsupa,. Therefore, if
(X,) is a random sequence of real randon variables, then

lim a, exists in [—00, 00| if and only if liminf a,, = limsup a,,.
n— 00 n—0o0 n— 00

Moreover, by definition, there are two sub-sequences n; and m; such that

lim a,, =liminfa, and lim a,, =limsupa,
k—o0 n—00 l—o00 n—00

where we can choose two subsequences such that
Nog <My <ng <mqg < - <np<my<---
In the case that liminf, . a, < limsup,,_, . a,, then we can choose a < b such that

liminfa, <a<b<limsupa,
n—00 n—00

(and we can demand that a < b to be rational numbers). Then, by looking the sequence
(ay,) along Gny, Amgs -+ + 5 Anys Gy, - -+, We can see that the sequence (a,,) must cross from low
level a to upper level b infinitely many times. That is, the number of up-crossing (a,b) by
(ay,) is infinite. Hencelim,, ., a, exists in [—oo, 00| if and only if the up-crossing number by
(a,,) through any (a,b) (for every pair a < b of rational numbers) is finte.

Apply this to a sequence (X,,) of real random variables,

{ lim X, exists in [—o0, oo]} = {the up-corssing number of (X,,) through (a,b) < oo for any rationals

n—oo
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Let X = (X,)n>0 be a sequence of real valued random variables, and a < b be two
numbers. An up-crossing is the event that the sequence X, is below a at some n and then
X, > b for some m > n, and similarly we may define a down-crossing. Let us concentrate
on up-crossing events.

Define
Ty, = inf{n>0:X, <a},
Ty = inf{n>1Ty:X,>0b},
T2j = inf {n > Tijl : Xn < Cl},
T2j+1 = inf {TL > TQj : Xn > b},

T} is the first time that the sequence X goes to the level below a, and 7T is the first time X
goes back to the level b after reaching the level below a and so on. All T}, are random times
but can take value oo, and {T}} is increasing. Moreover

a on {Ty < oo},
b on {T2j+1 < OO}

If Th;_1(w) < oo for some j € N, then the sequence
XO(W)v o JXTQj—l (w)

up-crosses the interval [a, b] exactly j times.
Let U?(X;n) denote the number of up-crossings of the interval [a,b] by {Xo, -, X, }.
Then
{Ua(Xsn) =5} = {Toj1 < n < Ty} (11.1)

and
{Us(X5n) > j} = {To;1 < n} (11.2)
for j=0,1,---.
If X = (X,)n>0 is adapted with respect to a filtration {F, : n > 0}, then T}, are stopping
times. Hence {U2(X;n) =j} € F, for any n € Z, and j € Zy.

Lemma 11.1 For any b > a and n,k € N we have

e T ()

and X, —a X1y inn — XTyenn
1{U};(X;n)zk} < ml{[]g(x;n):k} + T ) (11.4)
Proof. [The proof is not examinable] For every k = 1,2,---, Top1y < Top1 < Ty
on {Tpy—1 < oo}. Let us consider the increments of X = (X,,) over [Th4-_1),Tor—1] and

[Tor_1, Tor] respectively, which must be greater than b — a on {Ty_; < oo} (resp. on
{Tgk < OO})

44



It is elementary that

Xty ian = X1y yyan = (XT%,lAn - XTQ(k_1)> 1{T2<k71>§n}
= (Xrs = Xy ) Ty Lt 1)
(X = X)) Y o o
= (Xrs = X)) L

+ (Xn - XTQ(k—l)) 1{T2(k—1)§n<T2k71}'

Since Xr,,_, — X1,,_,, > b—aon {Top—1 < o0}, X1y, S aon {TQ(k,l) < oo}, and since
{Tor—1 < n} = {UL(X;n) >k}, we deduce frome the previous identity that

Xryann = Xry i 2 (0= Olyicnsry + (Ko = a) Ly - cnem, )
and (11.3) follows. Similarly, one may use the decomposition

XTZkfl/\” - XT%A" - (XTQkfl - XT2k> 1{T2k§n} + (XTQkA - XTL) 1{T2k—1§n<T2k}
> (b - a) 1{T2kSn} + (b - Xn) 1{T2k71§n<T2k}
= (b - a) (1{T2kS”} + 1{T2k71§n<T2k}) + (a - Xn) 1{T2k—lgn<T2k}
= (b - a) 1{T2k—1§n} + (a’ - XN) 1{T2k—1§n<T2k}

where we have used the fact that Xr,, , > b on {Ty_1 < oo}, which yields that

a — Xn XTQ}C,l/\T’L - XTgk/\’n

1{T2k71§n} < - b—a 1{T2k71§n<T2k} + b—a

Theorem 11.2 (Doob’s up-crossing lemma) 1) If X = (X,,) is a super-martingale, then
foranyn>1,k>0

X,—a)”

P[UY(X;n) > k] <E {(b—a) UM X n) = k}

—a

and

b—a

[Note that X, — a is also a super-martingale for any constant a, so that (X, —a)~ is a
sub-martingale./
2) Similarly, if X = (X,,) is a sub-martingale, then

E[U(X;n)] <E {M} .

P[UYX;n)> k] <E {% UM Xn) = k}
" E[U(X;n)] <E {%] .

[For a sub-martingale, (X, — a)™ is again a sub-martingale for every constant a./
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Proof. [The proof is not ezaminable] 1) Suppose X is a super-martingale, according to
Doob’s optional stopping theorem

E |:XT2]€,1/\TL - XT2<k,1)/\n] S O? (115)

so that it follows from (11.3) that

Xn
P{U;(X;n) >k} < -E { 1{Ub Xin)= k}} <XT2’“‘1A” B XTQ“-“”‘)

< —E{X "1 s k}}

which proves the first inequality. Since U?(X,n) takes values in Z, so that

EUY(X,n) = ZkIP’{UbXn =k} = Z]P’{UbXn > k)

[e.e]

X, —a)”

b(X:n) = <E Xn=a)” :

Z { b—a $Ua(Xim) = k} { b—a

2) If X is a sub-martingale, then E (XT%_I/\” — XT%M) < 0, so that, by (11.4) we obtain

P{U}(X;n) >k}<IE{X 1{Ub(Xn k}}
|

Theorem 11.3 (The martingale convergence theorem, J. L. Doob) 1) Suppose X = (X,,)
is a super-martingale, such that sup, E[|X,|] < co (i.e. (X,) is bounded in L'(§2)), then
Xoo = lim, o X,, exists almost surely and X,, € L'(Q2). If in addition X = (X,,) is
non-negative, then E [ X |F,] < X, forn > 0.

2) If X = (X,,) is uniformly integrable martingale, then X, = lim, ,o, X, ezists almost
surely and in L'($2), and X,, = E [X|F,] for every n.

Proof. [The proof is not examinable] For any pair of rationales a,b € Q with a < b,
Ul(X) = lim,_,o U’(X;n) is the total number of up-crossings of the interval (a, b) ever made
by (X,). By MCT and Doob’s crossing lemma we have

(Xn —a)”
b—a

lal
< b_a—i-b_as%pEHXnH < 00.

E [U(X)] = lim E [U2(X;n)] <supE

n—oo

That is, U’(X) is integrable, so is finite almost surely. Let
Wiap) = {liminf, , X,, < a, limsup,,_, X, > b}

and W = U(p»W(ap), Where the union runs through the countable set of rational pairs
(a,b), a < b. It is easy to verify, by definition of limits, that W C {US(X) = oo}, SO
that P [W(,s] = 0. Hence P(W) = 0. However if w ¢ W, then lim,_. X,(w) exists, and
we denote it by X (w) and on W we set Xoo(w) = 0. Then X,, - X on W€ Thus
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X, — X almost surely. According to Fatou’s lemma, E|X,| < sup,, E|X,| < oo, so that
X. € L'(Q, F,P).

If in addition {X,} is non-negative, since E [X,,|F,] < X,, for m > n, letting m — oo,
Fatou’s lemma then yields that E [X|F,] < X,,, the proof is thus complete.

If however X = (X,,) is uniformly integrable martingale, then we also have X,, — X
in L'. Since for every m > n we have E[X,,|F,] = X, by letting m — oo to obtain
Xy =E[Xs|F.] =

Corollary 11.4 (Levy’s “Upward” theorem) Let £ € L'(§2) and X,, = E[¢|F,]. Then X =
(Xn) is a uniformly integrable martingale, and lim, ., X,, = E[£{|F] almost everywhere,
where Foo = 0 {F; : j > 0}.

Proof. By considering £t and £~ instead, we may assume that £ is non-negative without
losing generality. Since £ € L'(£2), X = (X,,) is a uniformly integrable martingale. Thus
lim,, .o, X, = X exists a.e. and X, is non-negative. By definition X, is F,,-measurable.
Let C = U2 F;. Then, for every A € C we have E(14X.) = E(14¢) , and F is the
smallest o-algebra containing C. Consider the collection G of all subsets A in F such that
E(14Xw) = E(14£). Then, since X and § are non-negative and integrable, the monotone
convergence theorem implies that G is a o-algebra containing C. Therefore G D F,, thus we
must have X, = E[¢{|F]. m

Corollary 11.5 (Kolmogorov’s 0-1 law) Let &, (n =1,2,--- ) be a sequence of independent
random variables on (2, F.P), G, = 0{&; : j > n+ 1} and G = N2 4G,. Any element in
Goots called a tail event. If A € Gu, then P(A) =0 or 1. Thus any Go.-measurable random
variable is constant almost surely.

Proof. Let F,, = 0 {{; : 7 <n}. Then, for every n, F,, and G, are independent. Hence
F,. and G, are independent for any n. Let £ = 14 where A € G, and let X,, = E[{|F,].
Then X = (X,,) is a uniformly integrable martingale, and X,, — E[{|F,] = 14. On the
other hand, since £ and F,, are independent, so that X,, = E[{|F,| = E[{] = P(A) almost
everywhere. Therefore P(A) = 14 almost surely, so that P(A) =0or 1. m

12 The strong law of large numbers

Let (£2, F,P) be a probability space, instead of a filtration, we are given a decreasing family
of sub o-algebras (G,)n>0, where G, 11 C G, for n =0,1,2,---, where the largest o-algebra
is the initial one Go C F. The final o-algebra is G, = lim,,_,oo G, = ﬂ;’;o g,.

We may define martingales, sub-martingales and super-martingales with respect to the
decreasing flow (G,). Namely, a (G,,)-adapted and integrable random sequence X = (X,,)n>0
is a martingale (resp. super-martingale, and resp. sub-martingale) if E[X,|G,1+1] = X,11
(resp. E[X,|Gni1] < Xyi1, and resp. E[X,|Gni1] > Xoi1).

If we set F, = G, where n = ---,—2,—1,0 (with the natural order in Z_), then
(Fn) (where n = -+, —2,—1,0) is a filtration, i.e. an increasing flow of o-algebras. Then
M, = X_, (where n = --- =2, —1,0) is martingale (resp. super-martingale, resp. sub-
martingale) if E [M,|F,—1] = M, (resp. E[M,|F._1] < M,_1, resp. E [M,|F,—1] > M,
) for n = -+, —=2,—1,0. The following technical lemma allows us apply the results we
have established in the previous sections to martingales with respect to a decreasing flow of
calgebras, which follows directly from the definition.
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Lemma 12.1 Let (2, F,P) be a probability space together with a decreasing family (G,)n>0
of sub c-algebras of F. Let X = (X,)n>0, where X,, € L'(2,G,,P) forn = 0,1,2,---.
Then, X is martingale (resp. super-martingale, resp. sub-martingale), if and only if for
every N = 1,2,---, the time-reversed random sequence Y,, = Xn_, (where n = 0,--- | N)
is a martingale (resp. super-martingale, resp. sub-martingale) up to time N (with terminal
value Xy ), with respect to the filtration Gy_,, .

As a sample of applications of the previous lemma, we prove the following very useful
convergence result.

Theorem 12.2 Let (§2, F,P) be a probability space together with a decreasing family (G, )n>o0
of sub o-algebras of F. If X = (X,)n>0 is a super-martingale with respect to (G,), then
Xoo = limy, 0o X, exists almost surely. If in addition lim,,_,., E[X,] < co then {X,, : n > 0}
is uniformly integrable, and X,, — X, in L*(12).

Proof. [The proof is not examinable.] For every N = 1,2 --- the time-reversed se-
quence { Xy, Xn_1, -+, Xo} is a super-martingale (up to time N) with respect to Gn_,,, its
up-crossing number through [a,b] where a < b is denoted by U’(X,—N). The label — is
used to indicate the reversed up-crossing, rather than U°(X, N) which is the up-crossing
of {Xo, X1, -+, Xy}, but they are equally useful in determining the convergence. Let
Ul(X) = limy_o U(X,—N) which represents the number of up-crossings for the time-
reversed sequence {---, Xn, Xny_1, -+, Xo}. According to Doob’s up-crossing lemma, for
every N,

b—a

X )
E [UY(X;—N)] <E {M} .

The right-hand side is independent of NV, so by applying the Monotone Convergence Theorem,

we have

E[UX(X)] <E {%} .

Therefore U2(X) is integrable, so that U?(X) < oo almost everywhere. A similar argument
as the proof of the Martingale Convergence Theorem may apply to conclude that X, =
lim,, .o, X, exists almost everywhere, and X, is ﬂ;; G;-measurable.

Since n — E [X,,] is increasing (note that not decreasing, as it is a time-reversed super-
martingale), so that sup, E [X,,] = lim,,_,« E [X,,]. Suppose that lim, . E[X,] < co. Then
sup, E[X,] < oo. Since Xj is integrable, &, = E[X(|G,] is uniformly integrable (time-
reversed) martingale, and @,, = X,, — &, is (time-reversed) super-martingale. Since

which implies that @, is non-negative, and X,, = @Q,, + &,. Therefore, to show that X is
uniformly integrable, we only need to show that @ = (Q,) is uniformly integrable. Thus,
without losing generality, we may assume that X = (X,,) is a non-negative (time-reversed)
super-martingale, and sup,, E [X,,] = lim,,_,», E [X,,] < oc.

According to the time-reversed super-martingale property, for any n > m > 0 and L > 0,
since {X,, < L} € G,, we have

E[X,: X,>L =E[X,]-E[X,: X, <L <EX, —E[Xp: X, <]
<E[X, - E[Xp] +E[X: X, > L].
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Since lim,1o0 E [X,] exists, so for every € > 0, there is Ny such that 0 < E [X,,| —E [X,,] <
S for all n,m > N;. Since the finite family of integrable random variables{ Xy, -+, X, } is
uniformly integrable, so there is § > 0 such that E[X,, : A] < ¢/2 for any A with P(A) <
g, for all m < Nj. On the other hand, using Markov inequality P[X,, > L] < %.
Choose Ly = %. Then P[X, > L] < 0 for all L > Ly and for all n. Therefore
E[X,, : Xp > L] < § forallm < Ny and L > Ly, and

E[X,:X,>L <EX, —EXn +E[Xn, : X, > L] <c¢
for all L > Ly and n > N;. Putting all these estimates together we deduce that
E[X,: X,>L]<e

for all n and L > Lo, which proves that (X,,) is uniformly integrable. Hence X,, — X in
LY(Q) as well. m

Corollary 12.3 (Levy’s “Downward” theorem) Let (£2, F,P) be a probability space together
with a decreasing family (Gn)n>o0 of sub calgebras of F. Let £ € L'(2) and X = (X,))n>o0,

where X, = E[€|G,] forn =0,1,2,---. Then, X, — Xoo = E [a N, g]}.

This follows from the previous theorem, as X = (X,,) is a uniformly integrable (time-
reversed) martingale.

We are now in a position to prove the strong law of large numbers for i.i.d. sequences.
We collect a few elementary facts about independent sequences in the following examples.

Example 12.4 If {&;}i>1 is a sequence of independent random variables on (2, F,P), then
Goo = o2y 0{& 1 j > n} is the tail o-algebra of the independent random sequence {Ex}, ;-
Any element in G is called a tail event. Suppose A € G, we prove that P(A) = 0 or 1,
which s called Kolmogorov’s 0-1 law. It follows that Go.-measurable function Z must be
constant almost everywhere, so that Z =K [Z] a.e.

Theorem 12.5 (A. Kolmogorov, The Strong Law of Large Numbers) Let {{;}r>1 be a se-
quence of independent integrable random variables on (2, F,P) with the same distribution.
Then =30 1 & — E[&] almost everywhere.

Proof. Let (G,)n>0 be the decreasing family of o-algebras generated by the sequence
(X,), where X,, = >/, &. That is

gn:o-{Xmmzn}:O-{Xnvngn—'—l}

Let M, = 1X,. We show that M = (M,) is a (time-reversed) martingale with respect to
(Gn). First we observe that, since &1, - - - , &, are independent, with the same distribution, we
thus have

ElGl6+ -+ &) =E[&]& + - + 6]

In fact, for every i, X,, — & and &; are independent, their distributions are independent of i.
Thus (&, X,,) has the same distribution as that of (£;, X,,). Since in general the conditional
expectation E [¢|(] of € given ( is a function of ¢ depending only on their joint distribution,
thus E [¢;|X,,] is independent of i = 1,--- ,n. Hence E [¢;|X,] = E [£]X,,] for all i <n (here
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the assumption that &; has the same distribution is essential). On the other hand, since &;
are independent, so that

E[&]Xn] = E[&| X0, &5 > n+ 1] = E[&]G,]

and therefore

n

M, = i (X0 X o] ZE &1 X] ZE[§1|X,L]

]=1

=E[&]X,] = [Sllgn] :

Therefore, M is a time-reversed martingale, and M = (M,,) is uniformly integrable, thus,
according to Corollary 12.3, M,, - M, = E [51\ Nie Qj] almost everywhere. Since

My = lim St H

n—00 n

so Mo is 0{&; : 7 > m + 1}-measurable for any m, thus M., is measurable with respect
to the tail o-algebra, according to Kolmogorov’s 0-1 law, M, must be a constant (almost
surely), so that My, = E[M,] = E[&].

We should point out that the strong law of large numbers for i.i.d. sequences is still a
special case of Birkhoff’s ergodic theorem for strictly stationary sequences. Birkhoff’s ergodic
theorem however rquies a different approach and thus provides a different proof for the strong
law of large numbers.

13 Doob’s decomposition for super-martingales

We introduce an important tool for the study of martingales, Doob’s decomposition for
square-integrable super-martingales. The extension to the continuous time case is much more
difficult, called Doob-Meyer’s decomposition, which is the key in order to define stochastic
integrals with respect to martingales.

Suppose X = (X,,) is a super-martingale on a filtered probability space (2, F,F,,P).
Thus E[X,1|F.] < X,, so roughly speaking on average, n — X,, is decreasing. Doob’s
decomposition is an explicit statement about this fact. The idea is to seek for a martingale
M, and an increasing sequence A, such that X, = M,, — A,,. Let Ay = 0 and M, = X,.
Since

Xn+1 - Xn = MnJrl - Mn - (An+1 - An)
and conditional on F,, to obtain

E[Xpi1|Fn) — X = —E[An — AnlFal.

If we impose the condition that A, is F,_j-measurable for every n > 1 (such a sequence is
called predictable). Then

n

Ay = Ap+ Xy = E[Xo1|Fa] = Y (X — E[X;14]F)) ZE — Xjn|F;]

J=0

for n > 0. We note that, since X,, is a super-martingale, thus (A,) is increasing and
predictable, with Aqg = 0, and it is direct to verify that M, = X,, + A,, is a martingale.
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Theorem 13.1 (Doob’s decomposition for super-martingales) Let X = (X,,) be a super-
martingale over a filtered probability space (S, F, F,,P). Then there is a unique increasing
predictable random sequence (A,) with Ay = 0, such that M,, = X, + A, is a martingale.
More precisely

n—1
A= 37 (X; —E[X;1]F)
j=0

and
n—1

§=0
form=1,2,---, and Ay =0, My = Xo. The decomposition X, = M,, — A,, is called Doob’s
decomposition for the super-martingale X = (X,,).

Let us apply Doob’s decomposition to square integrable martingales.

Suppose that M = (M,) is a martingale such that E[M?] < oo for each n. Then M?
is a sub-martingale, so —M? is a super-martingale. Therefore there is a unique increasing
predictable random sequence A, such that —M? + A, is again a martingale, where

[y

n—1
(M} +E[MaIF]) = 3B (M - MIF]

=0

n—

A

3 .
Il
- o

E [(Mj — M;)* | F;]

[e=]

<.

which is called the bracket process associated with M. The bracket process will play an
important role in the study of martingales, so let us give a definition.

Definition 13.2 1) Let M = (M,,) be a martingale with M,, € L*(Q) for every n. Then the
bracket process (M) associated with M is the unique predictable, increasing sequence with
(M), =0 such that M7 — (M), is a martingale. Explicitly (M) is given by

n—1

(M), = E[(Mj — M;)*|F]

J=0

forn>1, (M), =0. That is, (M) is the conditional quadratic variational process associated
with M. In particular, for any bounded stopping time T, E[M7 — M) = E[(M),], and

SupE [M — M§] = swpE[(M),] = lim E[(M),] = E[(M)

n—oo o

where (M) = lim,_,o (M), (which may be infinity), and the last equality follows from
MCT applying to (M), 1 (M) ..
2)The quadratic variational process [M],, associated with M is defined by [M]o =0 and

forn > 1.
3) A martingale M = (M,,) is called a squared integrable martingale if sup,, E [M?] < oo
(i.e. {M,, :n >0} is bounded in L*(2).)
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By a direct computation we have

Lemma 13.3 1) Let M = (M,,) be a martingale on a filtered probability space (2, F, F,,P)
such that M, € L*(£2). Then [M], — (M), is a martingale, while (M) is predictable, and
[M] is an adapted increasing sequence.

2) Suppose that M and N are two martingales such that M,, N,, € L*(02), then M, N,, —
(M, N), is a martingale, where the mutual bracket

<M7N>n:

AN,

(M +N) - (M —N))

3

= E [(Mj+1 - Mj)(Nj-i-l - N])“F]] :

0

e

forn >1, (M,N), =0, which is a predictable process.

Suppose that M = (M,) is a martingale, and H = (H,) is a predictable process, the
martingale transform H.M (which corresponds the Ito integral of H against M, so called
discrete stochastic integral of H against M) is defined by (H.M ), = 0 and

(H.M),, = iHj(Mj — Mj_l)
for n > 1. Then :
(M) = ZE (Hya (M1 — M) ) = ZHE My — M\
- ;Hmm — ), )

which is H?. (M), the stochastic integral of H? with respect to the increasing process (M).
The bracket processes play a fundamental role in Ito’s stochastic integration theory. Here
we only give an elementary application of the bracket process.

Theorem 13.4 Let M = (M,,) be a martingale on a filtered probability space (£2,F,F,,P)
such that M, € L*(£2). Then My = lim,_,oo M, exists on {(M)_ < oc}.

Proof. [The proof is not examinable]. Since

(M), < oo} = J{(M), <1}

so we only need to show that M, = lim,_.. M, exists on each {(M)_ < l}. Let ! > 0,
and T = inf {k: >0: (M), > l}. Then T is a stopping time as (M) is predictable, so that
by Theorem 10.4, MZ,, — (M), is martingale, thus E[MZ,,] = E[(M),,, ] < [ for all
n. Therefore { M7,,} is a uniformly integrable martingale, so that lim,,_,., My, exists. In
particular, lim,,_,o, M, exists on {T' = oo}, so does on {(M)_ <[} forany [ >0. m

Recall that if X = (X,,) is a SMartingale which is uniformly integrable, then X,, — X
almost surely and in L. For the LP-bounded martingale, we have the following
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Theorem 13.5 Suppose X = (X, )n>1 is a martingale which is bounded in LP-space for
some p > 1, that is, sup, E [| X,|'] < 0o, then (X, )n>0 is uniformly integrable, and X, — X«
almost surely, and in LP-space. Moreover

E [ Xeof] = sup E [| X, ["] .
Proof. [The proof is not examinable.] It is known that sup, E[|X,|"] < oo for some

p > 1 implies that (X,,) is uniformly integrable, so that X,, — X, almost surely and in L.
Let g = lim,, o sSUpy<, [ Xx|. Applying Doob’s LP-inequality to the sub-martingale | X,,| we

have E[ p] . (%)”E[‘Xn‘p] < (%)ps%pEHanp].

Thus, by MCT we conclude that

sup | Xi|
k<n

p
Bllal] < (S2) swE(x] <o

that is |g|? is integrable. Now |X,, — X|P — 0 almost surely, and | X, — X |? < 2?|g|P for
all n, so by Lebesgue’s dominated convergence theorem, we have

E[|X, — Xof] = 0
as n — o0o. Since | X,|P is a sub-martingale, so that n — E [| X,|P] is increasing, and therefore

E[[Xl] = lim E[JX,["] = sup E [|X,["].
n—00 n
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