
Bayesian Optimization for Probabilistic Programs -
Supplementary Materials

Tom Rainforth† Tuan Anh Le† Jan-Willem van de Meent‡
Michael A. Osborne† Frank Wood†

† Department of Engineering Science, University of Oxford
‡ College of Computer and Information Science, Northeastern University

{twgr,tuananh,mosb,fwood}@robots.ox.ac.uk, j.vandemeent@northeastern.edu

1 Program Transformations

In this section we give a more detailed and language specific description of our program transfor-
mations. The code for these transformations can be found at http://www.bitbucket.org/
twgr/bopp.

1.1 Anglican

Anglican is a probabilistic programming language integrated into Clojure (a dialect of Lisp) and
inherits most of the corresponding syntax. Anglican extends Clojure with the special forms sample
and observe [1]. Each random draw in an Anglican program corresponds to a sample call, which
can be thought of as a term in the prior. Each observe statement applies weighting to a program
trace and thus constitutes a term in the likelihood. Compilation of an Anglican program, performed
by the macro query, corresponds to transforming the code into a variant of continuation-passing style
(CPS) code which results in a function that can be executed using a particular inference algorithm.

Anglican program code is represented by a nested list of expressions, symbols, non-literals for
contructing data structures (e.g. [...] for vectors), and command dependent literals (e.g. [...] as
a second argument of a let statement which is used for binding pairs). In order to perform program
transformations, we can recursively traverse this nested list which can be thought of as an abstract
syntax tree of the program.

Our program transformations also make use of the Anglican forms store and retrieve. These
allow storing any variable in the probabilistic program’s execution trace in a state which is passed
around during execution and from which we can retrieve these stored values. The core use for this is
to allow the outer query to return variables which are only locally scoped.

To allow for the early termination discussed in Section 1.5, it was necessary to add one new primitive
to Anglican, namely return with syntax (return return-val). At a high level, return causes
the query to terminate, returning return-val. This is done by, during runtime of the CPS compiled
code, returning a Clojure record ->result containing return-val instead of a valid program
continuation, causing the query execution to terminate and return the required value.

1.2 Representations in the Main Paper

In the main paper we presented the code transformations as static transformations as shown in Figure
3. Although for simple programs, such as the given example, these transformations can be easily
expressed as static transformations, for more complicated programs it would be difficult to actually
implement these as purely static generic transformations in a higher-order language. Therefore, even
though all the transformations dynamically execute as shown at runtime, in truth, the generated
source code for the prior and acquisition transformations varies from what is shown and has been
presented this way in the interest of exposition. Our true transformations exploit store, retrieve,
30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

http://www.bitbucket.org/twgr/bopp
http://www.bitbucket.org/twgr/bopp
http://www.bitbucket.org/twgr/bopp
http://www.bitbucket.org/twgr/bopp

and return to generate programs that dynamically execute in the same way at run time as the static
examples shown, but whose actual source code varies significantly.

1.3 Prior Transformation

The prior transformation recursively traverses the program tree and applies two local transformations.
Firstly it replaces all observe statements by nil. As observe statements return nil, this trivially
preserves the generative model of the program, but the probability of the execution changes. Secondly,
it inspects the binding variables of let forms in order to modify the binding expressions for the
optimization variables, as specified by the second input of defopt, asserting that these are directly
bound to a sample statement of the form (sample dist). The transformation then replaces
this expression by one that stores the result of this sample in Anglican’s store before returning
it. Specifically, if the binding variable in question is phi-k, then the original binding expression
(sample dist) is transformed into

(let [value (sample dist)]
;; Store the sampled value in Anglican’s store
(store OPTIM-ARGS-KEY

’phi-k
value)

value)

After all these local transformation have been made, we wrap the resulting query block in a do form
and append an expression extracting the optimization variables using Anglican’s retrieve. This
makes the optimization variables the output of the query. Denoting the list of optimization variable
symbols from defopt as optim-args and the query body after applying all the above location
transformations as . . . , the prior query becomes

(query query-args
(do
...
(map (fn [x] (retrieve OPTIM-ARGS-KEY x))

optim-args)))

Note that the difference in syntax from Figure 3 in the main paper is because defquery is in truth a
syntactic sugar allowing users to bind query to a variable. As previously stated, query is macro that
compiles an Anglican program to its CPS transformation. An important subtlety here is that the order
of the returned samples is dictated by optim-args and is thus independent of the order in which the
variables were actually sampled, ensuring consistent inputs for the BO package.

We additionally add a check (not shown) to ensure that all the optimization variables have been
added to the store, and thus sampled during the execution, before returning. This ensures that our
assumption that each optimization variable is assigned for each execution trace is satisfied.

1.4 Acquisition Transformation

The acquisition transformation is the same as the prior transformation except we append the acquisi-
tion function, ACQ-F, to the inputs and then observe its application to the optimization variables
before returning. The acquisition query is thus

(query [query-args ACQ-F]
(do
...
(let [theta (map (fn [x] (retrieve OPTIM-ARGS-KEY x))

optim-args)]
(observe (factor) (ACQ-F theta))
theta)))

1.5 Early Termination

To ensure that q-prior and q-acq are cheap to evaluate and that the latter does not include
unnecessary terms which complicate the optimization, we wish to avoid executing code that is not

2

required for generating the optimization variables. Ideally we would like to directly remove all
such redundant code during the transformations. However, doing so in a generic way applicable
to all possible programs in a higher order language represents a significant challenge. Therefore,
we instead transform to programs with additional early termination statements, triggered when all
the optimization variables have been sampled. Provided one is careful to define the optimization
variables as early as possible in the program (in most applications, e.g. hyperparameter optimization,
they naturally occur at the start of the program), this is typically sufficient to ensure that the minimum
possible code is run in practise.

To carry out this early termination, we augment the transformation of an optimization variable’s
binding described in Section 1.3 to check if all optimization variables are already stored, and invoke
a return statement if so.

(let [value (sample dist)]
;; Store the sampled value in Anglican’s store
(store OPTIM-ARGS-KEY

’phi-k
value)

;; Terminate early if all optimization variables are sampled
(if (= (set (keys (retrieve OPTIM-ARGS-KEY)))

(set optim-args))
(return prologue-code)
value))

Here, prologue-code refers to one of the following expressions depending on whether it is used
for a prior or an acquisition transformation

;; Prior query prologue-code
(map (fn [x] (retrieve OPTIM-ARGS-KEY x))

optim-args)

;; Acquisition query prologue-code
(do
(let [theta (map (fn [x] (retrieve OPTIM-ARGS-KEY x))

optim-args)]
(observe (factor) (ACQ-F theta))
theta))

We note that valid programs for both q-prior and q-acq should always terminate via one of these
early stopping criteria and therefore never actually reach the appending statements in the query
blocks shown in Sections 1.3 and 1.4. As such, these are, in practise, only for exposition and error
catching.

1.6 Marginal/MMAP Transformation

The marginal transformation inspects all let binding pairs and if a binding variable phi-k is one of
the optimization variables, the binding expression (sample dist) is transformed to the following

(do (observe dist phi-k-hat)
phi-k-hat)

corresponding to the observe<- form used in the main paper.

1.7 Error Handling

During program transformation stage, we provide three error-handling mechanisms to enforce the
restrictions on the probabilistic programs described in Section 3.

1. We inspect let binding pairs and throw an error if an optimization variable is bound to
anything other than a sample statement.

2. We add code that throws a runtime error if any optimization variable is assigned more than
once or not at all.

3

3. We recursively traverse the code and throw a compilation error if sample statements of
different base measures are assigned to any optimization variable. At present, we also throw
an error if the base measure assigned to an optimization variable is unknown, e.g. because
the distribution object is from a user defined defdist where the user does not provide the
required measure type meta-information.

2 Gaussian Process Surrogate in Detail

Informally one can think of a Gaussian Process (GP) [2] as being a nonparametric distribution
over functions which is fully specified by a mean function µ : ϑ → R and covariance function
k : ϑ×ϑ→ R, the latter of which must be a bounded (i.e. k (θ, θ′) <∞, ∀θ, θ′ ∈ ϑ) and reproducing
kernel. We can describe a function f as being distributed according to a GP:

f (θ) ∼ GP (µ (θ) , k (θ, θ′)) (1)

which by definition means that the functional evaluations realized at any finite number of sample
points is distributed according to a multivariate Gaussian. Note that the inputs to µ and k need not be
numeric and as such a GP can be defined over anything for which kernel can be defined.

An important property of a GP is that it is conjugate with a Gaussian likelihood. Consider pairs
of input-output data points {θ̂j , ŵj}j=1:m, Ŵ = {ŵj}j=1:m, Θ̂ = {θ̂j}j=1:m and the separable
likelihood function

p(Ŵ |Θ̂) =

m∏
j=1

p(ŵj |f(θ̂j)) =

m∏
j=1

1

σn
√

2π
exp

−
(
ŵj − f(θ̂j)

)2
2σ2

n

 (2)

where σn is an observation noise. Using a GP prior f (θ) ∼ GP (µprior (θ) , kprior (θ, θ)) leads to an
analytic GP posterior

µpost (θ) = µprior (θ) + kprior

(
θ, Θ̂

) [
kprior

(
Θ̂, Θ̂

)
+ σ2

nI
]−1 (

Ŵ − µprior

(
Θ̂
))

(3)

kpost (θ, θ′) = kprior (θ, θ′)− kprior

(
θ, Θ̂

) [
kprior

(
Θ̂, Θ̂

)
+ σ2

nI
]−1

kprior

(
Θ̂, θ′

)
(4)

and Gaussian predictive distribution

w|θ, Ŵ , Θ̂ ∼ N
(
µpost (θ) , kpost (θ, θ) + σ2

nI
)

(5)

where we have used the shorthand kprior(Θ̂, Θ̂) =

[
kprior(θ̂1,θ̂1) kprior(θ̂1,θ̂2) ...

kprior(θ̂2,θ̂1) kprior(θ̂2,θ̂2) ...
...

]
and similarly for µprior,

µpost and kpost.

For our model, µprior is given by (4) in the main paper and we take the combination of a Matérn 3/2
and a Matérn 5/2 kernel for the prior covariance

kprior (θ, θ′) =σ2
3/2

(
1 +

√
3d

ρ3/2

)
exp

(
−
√

3d

ρ3/2

)
+ σ2

5/2

(
1 +

√
5d

ρ5/2
+

5d2

3ρ25/2

)
exp

(
−
√

5d

ρ5/2

)
(6)

where d = ‖θ − θ′‖2 is the Euclidean distance between points, and σ3/2, ρ3/2, σ5/2, and ρ5/2
are parameters to be set. Here σ3/2 and σ5/2 represent signal standard deviations for the two
respective kernels and ρ3/2 and ρ5/2 represent length scales. The full set of GP hyperparameters
is defined by α = {σ3/2, ρ3/2, σ5/2, ρ5/2, σn}. A key feature of this kernel is that it is only once
differentiable and therefore makes relatively weak assumptions about the smoothness of f . The
ability to include branching in a probabilistic program means that, in some cases, an even less smooth
kernel than (6) might be preferable. However, there is clear a trade-off between generality of the
associated reproducing kernel Hilbert space and modelling power. Our package provides the ability
for the user to provide an alternative covariance function if desired.

As noted by [3], the performance of BO using a single GP posterior is heavily influenced by the
choice of these hyperparameters. We therefore exploit the automated domain scaling introduced in

4

Section 4.3 to define a problem independent hyperprior p(α) (using the knowledge that both the input
and outputs vary between ±1) and perform inference to give a mixture of GPs posterior. We define
p(α) = p(σ3/2)p(ρ3/2)p(σ5/2)p(ρ5/2)p(σn) where

log
(
σ3/2

)
∼ N (−7, 0.5) (7a)

log
(
ρ3/2

)
∼ N (−1.5, 0.5) (7b)

log
(
σ5/2

)
∼ N (−0.5, 0.15) (7c)

log
(
ρ5/2

)
∼ N (−1, 0.5) (7d)

log (σn) ∼ N (−5, 2) . (7e)

The rationale of this hyperprior is that the smoother Matérn 5/2 kernel should be the dominant effect
and model the higher length scale variations. The Matérn 3/2 kernel is included in case the evidence
suggests that the target is less smooth than can be modelled with the Matérn 5/2 kernel and to provide
modelling of smaller scale variations around the optimum.

To perform the required inference for the GP hyperparameters we use Hamiltonian Monte Carlo [4]
(HMC). HMC was chosen because of the availability of analytic derivatives of the GP log marginal
likelihoods. As we found that the performance of HMC was often poor unless a good initializa-
tion point was used, BOPP runs a small number of independent chains and allocates part of the
computational budget to their initialization using a L-BFGS optimizer [5].

3 Additional Experiments and Details

3.1 Industrial Design

In this case study, illustrated in Figure 1 in the main paper, we optimize the parameters of a stochastic
engineering simulation. We use the Energy2D system from [6] to perform finite-difference numerical
simulation of the heat equation and Navier-Stokes equations in a user-defined geometry.

In our setup, we designed a 2-dimensional representation of a house with 4 interconnected rooms
using the GUI provided by Energy2D. The left side of the house receives morning sun, modelled
at a constant incident angle of 30◦. We assume a randomly distributed solar intensity and simulate
the heating of a cold house in the morning by 4 radiators, one in each of the rooms. The radiators
are given a fixed budget of total power density Pbudget. The optimization problem is to distribute
this power budget across radiators in a manner that minimizes the variance in temperatures across 8
locations in the house.

Energy2D is written in Java, which allows the simulation to be integrated directly into an Anglican
program that defines a prior on model parameters and an ABC likelihood for evaluating the utility of
the simulation outputs. Figure 2 in the main paper shows the corresponding program query. In this,
we define a Clojure function simulate that accepts a solar power intensity Isun and power densities
for the radiators Pr, returning the thermometer temperature readings {Ti,t}. We place a symmetric
Dirichlet prior on Pr

Pbudget
and a gamma prior on Isun

Ibase
, where Pbudget and Ibase are constants. This gives

the generative model:

pr ∼ Dirichlet([1, 1, 1, 1]) (8)
Pr ← Pbudget · pr (9)
υ ∼ Gamma(5, 1) (10)

Isun ← Ibase · υ. (11)

After using these to call simulate, the standard deviations of the returned temperatures is calculated
for each time point,

ωt =

√√√√ 8∑
i=1

T 2
i,t −

(
8∑
i=1

Ti,t

)2

(12)

and used in the ABC likelihood abc-likelihood to weight the execution trace using a multivariate
Gaussian:

p ({Ti,t}i=1:8,t=1:τ) = Normal
(
ωt=1:τ ; 0, σ2

T I
)

5

(defopt mvn-mixture [data mu0 kappa psi] [nu alpha]
(let [[n d] (shape data)

alpha (sample (uniform-continuous 0.01 100))
nu (sample (uniform-continuous (- d 1) 100))
obs-proc0 (mvn-niw mu0 kappa nu psi)]
(loop [data data

obs-procs {}
mix-proc (dirichlet-discrete

(vec (repeat d alpha)))]
(let [y (first data)]
(if y
(let [z (sample (produce comp-proc))

obs-proc (get obs-procs z obs-proc0)
obs-dist (produce obs-proc)]

(observe obs-dist y)
(recur (rest data)

(assoc obs-procs z (absorb obs-proc y))
(absorb mix-proc z)))

mix-proc)))))

Figure 1: Anglican query for hyperparameter optimization of a Gaussian mixture model, defined
in terms of two parameters nu and alpha. A mvn-niw process is used to represent the marginal
likelihood of observations under a Gaussian-inverse-Wishart prior, whereas a dirichlet-discrete
process models the prior probability of cluster assignments under a Dirichlet-discrete prior. The
command produce returns the predictive distribution for the next sample from a process. absorb
conditions on the value of the next sample.

where I is the identity matrix and σT = 0.8◦C is the observation standard deviation.

Figure 1 in the main paper demonstrates the improvement in homogeneity of temperatures as a
function of total number of simulation evaluations. Visual inspection of the heat distributions also
shown in Figure 1 confirms this result, which serves as an exemplar of how BOPP can be used to
estimate marginally optimal simulation parameters.

3.2 Hyperparameter Optimization

We next consider an illustrative case study of optimizing the hyperparameters in a multivariate
Gaussian mixture model. We consider a Bayesian formulation with a symmetric Dirichlet prior on
the mixture weights and a Gaussian-inverse-Wishart prior on the likelihood parameters:

π ∼ Dir(α, . . . , α) (13)
(µk,Σk) ∼ NIW(µ0, κ,Ψ, ν) for k = 1, . . . ,K (14)

zn ∼ Disc(π) (15)
yn ∼ Norm(µzn ,Σzn) for n = 1, . . . , N (16)

Anglican code for this model is shown in Figure 4. Anglican provides stateful objects, which are
referred to as random processes, to represent the predictive distributions for the cluster assignments z
and the observations yk assigned to each cluster

zn+1 ∼ p(· | z1:n, α), (17)

ykm+1 ∼ p(· |yk1:m,µ0, κ,Ψ, ν). (18)

In this collapsed representation marginalization over the model parameters π, µk=1:K , and Σk=1:K

is performed analytically. Using the Iris dataset, a standard benchmark for mixture models that
contains 150 labeled examples with 4 real-valued features, we optimize the marginal with respect
to the subset of the parameters ν and α under uniform priors over a fixed interval. For this model,
BOPP aims to maximize
p(ν, α|yn=1:N ,µ0, κ,Ψ)

=

∫∫∫∫
p(ν, α, zn=1:N ,π,µk=1:K ,Σk=1:K |yn=1:N , µ0, κ,Ψ)dzn=1:Ndπdµk=1:KdΣk=1:K .

(19)

6

0
nu

50

10 evaluations

10010050
alpha

0
-1000

-800

-400

-600lo
g

Z

20

40

60

80

100

120

0
nu

50

20 evaluations

10010050
alpha

0

-400

-600

-800

-1000

lo
g

Z

20
40
60
80
100
120
140

0
nu

50

50 evaluations

10010050
alpha

0

-400

-600

-800

-1000

lo
g

Z

20
40
60
80
100
120
140

p(
Y
,✓

)

p
(Y

,✓
)

p
(Y

,✓
)

Figure 2: Bayesian optimization of hyperparameters in a Gaussian mixture model evaluated on the
Iris dataset. Panels show the GP posterior as a function of number of evaluations, with the surface
corresponding to the posterior mean and the color bars the posterior standard deviation. Optimization
is performed over the parameter α of a 10-dimensional symmetric Dirichlet distribution and the
degrees of freedom ν of the inverse-Wishart prior. At each evaluation we obtain an estimate of the log
marginal log p(Y, θ) obtained by performing sequential Monte Carlo inference with 1000 particles.
The apparent maximum after initialization with 10 randomly sampled points lies at ν = 31, α = 60,
and log p(Y, θ) = −456.3 (left). The surface after 10 optimization steps shows a new maximum at
ν = 9.2, α = 0.8, and log p(Y, θ) = −352.5 (middle). After 40 steps and 50 total evaluations this
optimum is refined to ν = 16, α = 0.2, and log p(Y, θ) = −364.2 (right).

Figure 2 shows GP regressions on the evidence after different numbers of the SMC evaluations have
been performed on the model. This demonstrates how the GP surrogate used by BO builds up a
model of the target, used to both estimate the expected value of log p(Y, θ) for a particular θ and
actively sample the θ at which to undertake inference.

3.3 Extended Kalman Filter for the Pickover Chaotic Attractor

We next consider the case of learning the dynamics parameters of a chaotic attractor. Chaotic attractors
present an interesting case for tracking problems as, although their underlying dynamics are strictly
deterministic with bounded trajectories, neighbouring trajectories diverge exponentially1. Therefore
regardless of the available precision, a trajectory cannot be indefinitely extrapolated to within a given
accuracy and probabilistic methods such as the extended Kalman filter must be incorporated [8, 9].
From an empirical perspective, this forms a challenging optimization problem as the target transpires
to be multi-modal, has variations at different length scales, and has local minima close to the global
maximum.

Suppose we observe a noisy signal yt ∈ RK , t = 1, 2, . . . , T in some K dimensional observation
space were each observation has a lower dimensional latent parameter xt ∈ RD, t = 1, 2, . . . , T
whose dynamics correspond to a chaotic attractor of known type, but with unknown parameters. Our
aim will be to find the MMAP values for the dynamics parameters θ, marginalizing out the latent
states. The established parameters can then be used for forward simulation or tracking.

To carry out the required MMAP estimation, we apply BOPP to the extended Kalman smoother

x1 ∼N (µ1, σ1I) (20)
xt =A (xt−1, θ) + δt−1, δt−1 ∼ N (0, σqI) (21)
yt =Cxt + εt, εt ∼ N (0, σyI) (22)

where I is the identity matrix, C is a known K ×D matrix, µ1 is the expected starting position, and
σ1, σq and σy are all scalars which are assumed to be known. The transition function A (·, ·)

xt,1 = sin (βxt−1,2)− cos

(
5xt−1,1

2

)
xt−1,3 (23a)

xt,2 =− sin

(
3xt−1,1

2

)
xt−1,3 − cos (ηxt−1,2) (23b)

xt,3 = sin (xt−1,1) (23c)

1It is beyond the scope of this paper to properly introduce chaotic systems. We refer the reader to Devaney
[7] for an introduction.

7

(a) 1 iteration
θ = [−1.478, 0.855]T (b) 20 iterations

θ = [−2.942, 1.550]T (c) 100 iterations
θ = [−2.306, 1.249]T (d) Ground truth

θ = [−2.3, 1.25]T

Figure 3: A series of trajectories for different parameters, demonstrating convergence to the true
attractor. The colormap is based on the speed and curvature of the trajectory, with rendering done
using the program Chaoscope [11].

0 50 100 150
Iteration

-8000

-7000

-6000

-5000

-4000

-3000

-2000

lo
g

p(
Y

,3
)

0 50 100 150
Iteration

10-1

100

||3
-3

ge
ne

ra
tio

n|| 2

BOPP
PMMH-LMH
PMMH-RMH

Figure 4: Convergence for HMM in terms of the cumulative best log p (Y, θ) (left) and distance to
the “true” θ used in generating the data (right). Solid line shows median over 100 runs, whilst the
shaded region the 25/75% quantiles. Note that for the distance to true θ was calculated by selecting
which three states (out of the 5 generates) that were closest to the true parameters.

corresponds to a Pickover attractor [10] with unknown parameters θ = {β, η} which we wish to
optimize. Note that η and −η will give the same behaviour.

Synthetic data was generated for 500 time steps using the parameters of µ1 =
[−0.2149,−0.0177, 0.7630]T , σ1 = 0, σq = 0.01, σy = 0.2, a fixed matrix C where K = 20
and each column was randomly drawn from a symmetric Dirichlet distribution with parameter 0.1,
and ground truth transition parameters of β = −2.3 and η = 1.25 (note that the true global optimum
for finite data need not be exactly equal to this).

Inference was performed on this data using the same model and parameters, with the exceptions of θ,
µ1 and σ1. The prior on θ was set to a uniform in over a bounded region such that

p (β, η) =

{
1/18, if − 3 ≤ β ≤ 3 ∩ 0 ≤ η ≤ 3

0, otherwise
. (24)

The changes µ1 = [0, 0, 0] and σ1 = 1 were further made to reflect the starting point of the latent
state being unknown. For this problem, BOPP aims to maximize

p(β, η|yt=1:T) =

∫
p(β, η, xt=1:T |yt=1:T)dxt=1:T . (25)

Inference on the transformed marginal query was carried out using SMC with 500 particles. Conver-
gence results were shown in Figure 6 in the main paper, while Figure 3 shows the simulated attractors
generated from the dynamics parameters output by various iterations of a particular run of BOPP.

3.4 Hidden Markov Model with Unknown Number of States

We finally consider a hidden Markov model (HMM) with an unknown number of states. This example
demonstrates how BOPP can be applied to models which conceptually have an unknown number of
variables, by generating all possible variables that might be needed, but then leaving some variables
unused for some execution traces. This avoids problems of varying base measures so that the MMAP
problem is well defined and provides a function with a fixed number of inputs as required by the BO
scheme. From the BO perspective, the target function is simply constant for variations in an unused
variable.

8

HMMs are Markovian state space models with discrete latent variables. Each latent state xt ∈
{1, . . . ,K}, t = 1, . . . , T is defined conditionally on xt−1 through a set of discrete transition
probabilities, whilst each output yt ∈ R is considered to be generated i.i.d. given xt. We consider the
following HMM, in which the number of states K, is also a random variable:

K ∼ Discrete{1, 2, 3, 4, 5} (26)
Tk ∼ Dirichlet{11:K}, ∀k = 1, . . . ,K (27)
φk ∼ Uniform[0, 1], ∀k = 1, . . . ,K (28)
µ0 ← min{y1:T } (29)
µk ← µk−1 + φk · (max{y1:T } − µk−1), ∀k = 1, . . . ,K (30)
x1 ← 1 (31)

xt|xt−1 ∼ Discrete{Txt−1
} (32)

yt|xt ∼ N (µ(xt−1), 0.2). (33)

Our experiment is based on applying BOPP to the above model to do MMAP estimation with a single
synthetic dataset, generated using K = 3, µ1 = −1, µ2 = 0, µ3 = 4, T1 = [0.9, 0.1, 0], T2 =
[0.2, 0.75, 0.05] and T3 = [0.1, 0.2, 0.7].

We use BOPP to optimize both the number of states K and the stick-breaking parameters φk, with
full inference performed on the other parameters. BOPP therefore aims to maximize

p(K,φk=1:5|yt=1:T) =

∫∫
p(K,φk=1:5, xt=1:T , Tk=1:K |yt=1:T)dxt=1:TdTk=1:K . (34)

As with the chaotic Kalman filter example, we compare to two PMMH variants using the same code
transformations. The results, given in Figure 4, again show that BOPP outperforms these PMMH
alternatives.

References
[1] David Tolpin, Jan-Willem van de Meent, and Frank Wood. Probabilistic programming in Anglican.

Springer International Publishing.
[2] Carl Rasmussen and Chris Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
[3] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning

algorithms. In NIPS, pages 2951–2959, 2012.
[4] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo. Physics

letters B, 1987.
[5] Charles George Broyden. The convergence of a class of double-rank minimization algorithms 1. general

considerations. IMA Journal of Applied Mathematics, 6(1):76–90, 1970.
[6] Charles Xie. Interactive heat transfer simulations for everyone. The Physics Teacher, 50(4), 2012.
[7] Robert L Devaney, Luke Devaney, and Luke Devaney. An introduction to chaotic dynamical systems,

volume 13046. Addison-Wesley Reading, 1989.
[8] Keisuke Fujii. Extended kalman filter. Refernce Manual, 2013.
[9] Huawei Ruan, Tongyan Zhai, and Edwin Engin Yaz. A chaotic secure communication scheme with

extended kalman filter based parameter estimation. In Control Applications, 2003. CCA 2003. Proceedings
of 2003 IEEE Conference on, volume 1, pages 404–408. IEEE, 2003.

[10] Clifford A Pickover. The pattern book: Fractals, art, and nature. World Scientific, 1995.
[11] http://www.chaoscope.org/.

9

	Program Transformations
	Anglican
	Representations in the Main Paper
	Prior Transformation
	Acquisition Transformation
	Early Termination
	Marginal/MMAP Transformation
	Error Handling

	Gaussian Process Surrogate in Detail
	Additional Experiments and Details
	Industrial Design
	Hyperparameter Optimization
	Extended Kalman Filter for the Pickover Chaotic Attractor
	Hidden Markov Model with Unknown Number of States

