Bayesian Optimization for Probabilistic Programs

Tom Rainforth’ Tuan Anh Le! Jan-Willem van de Meent?
Michael A. Osborne’ Frank Wood'
 Department of Engineering Science, University of Oxford
¥ College of Computer and Information Science, Northeastern University
{twgr, tuananh, mosb, fwood}@robots .ox.ac.uk, Jj.vandemeent@northeastern.edu

Abstract

We present the first general purpose framework for marginal maximum a pos-
teriori estimation of probabilistic program variables. By using a series of code
transformations, the evidence of any probabilistic program, and therefore of any
graphical model, can be optimized with respect to an arbitrary subset of its sampled
variables. To carry out this optimization, we develop the first Bayesian optimization
package to directly exploit the source code of its target, leading to innovations in
problem-independent hyperpriors, unbounded optimization, and implicit constraint
satisfaction; delivering significant performance improvements over prominent exist-
ing packages. We present applications of our method to a number of tasks including
engineering design and parameter optimization.

1 Introduction

Probabilistic programming systems (PPS) allow probabilistic models to be represented in the form
of a generative model and statements for conditioning on data [4} 9, [10} |15} [16} 20, [29]. Their
core philosophy is to decouple model specification and inference, the former corresponding to the
user-specified program code and the latter to an inference engine capable of operating on arbitrary
programs. Removing the need for users to write inference algorithms significantly reduces the burden
of developing new models and makes effective statistical methods accessible to non-experts.

Although significant progress has been made on the problem of general purpose inference of program
variables, less attention has been given to their optimization. Optimization is an essential tool for
effective machine learning, necessary when the user requires a single estimate. It also often forms a
tractable alternative when full inference is infeasible [[17]. Moreover, coincident optimization and
inference is often required, corresponding to a marginal maximum a posteriori (MMAP) setting
where one wishes to maximize some variables, while marginalizing out others. Examples of MMAP
problems include hyperparameter optimization, expectation maximization, and policy search [27].

In this paper we develop the first system that extends probabilistic programming (PP) to this more
general MMAP framework, wherein the user specifies a model in the same manner as existing
systems, but then selects some subset of the sampled variables in the program to be optimized, with
the rest marginalized out using existing inference algorithms. The optimization query we introduce
can be implemented and utilized in any PPS that supports an inference method returning a marginal
likelihood estimate. This framework increases the scope of models that can be expressed in PPS and
gives additional flexibility in the outputs a user can request from the program.

MMAP estimation is difficult as it corresponds to the optimization of an intractable integral, such
that the optimization target is expensive to evaluate and gives noisy results. Current PPS inference
engines are typically unsuited to such settings. We therefore introduce BOPP (Bayesian optimization
for probabilistic programs) which couples existing inference algorithms from PPS, like Anglican
[29], with a new Gaussian process (GP) [22] based Bayesian optimization (BO) [19}14] package.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

FBOPP
- Even Powers|

50 100
Iteration

Figure 1: Simulation-based optimization of radiator powers subject to varying solar intensity. Shown
are output heat maps from Energy2D [30]] simulations at one intensity, corresponding from left to
right to setting all the radiators to the same power, the best result from a set of randomly chosen
powers, and the best setup found after 100 iterations of BOPP. The far right plot shows convergence
of the evidence of the respective model, giving the median and 25/75% quartiles.

(defopt house-heating [alphas] [powers]
(let [solar-intensity (sample weather-prior)
powers (sample (dirichlet alphas))
temperatures (simulate solar-intensity powers)]
(observe abc-likelihood temperatures)))

Figure 2: BOPP query for optimizing the power allocation to radiators in a house. Here
weather-prior is a distribution over the solar intensity and a uniform Dirichlet prior with concen-
tration alpha is placed over the powers. Calling simulate performs an Energy2D simulation of
house temperatures. The utility of the resulting output is conditioned upon using abe-1likelihood.
Calling doopt on this query invokes the BOPP algorithm to perform MMAP estimation, where the
second input powers indicates the variable to be optimized.

To demonstrate the functionality provided by BOPP, we consider an example application of engineer-
ing design. Engineering design relies extensively on simulations which typically have two things in
common: the desire of the user to find a single best design and an uncertainty in the environment in
which the designed component will live. Even when these simulations are deterministic, this is an
approximation to a truly stochastic world. By expressing the utility of a particular design-environment
combination using an approximate Bayesian computation (ABC) likelihood [5]], one can pose this as
a MMAP problem, optimizing the design while marginalizing out the environmental uncertainty.

Figure|Tillustrates how BOPP can be applied to engineering design, taking the example of optimizing
the distribution of power between radiators in a house so as to homogenize the temperature, while
marginalizing out possible weather conditions and subject to a total energy budget. The probabilistic
program shown in Figure 2] allows us to define a prior over the uncertain weather, while conditioning
on the output of a deterministic simulator (here Energy2D [30]-a finite element package for heat trans-
fer) using an ABC likelihood. BOPP now allows the required coincident inference and optimization
to be carried out automatically, directly returning increasingly optimal configurations.

BO is an attractive choice for the required optimization in MMAP as it is typically efficient in the
number of target evaluations, operates on non-differentiable targets, and incorporates noise in the
target function evaluations. However, applying BO to probabilistic programs presents challenges,
such as the need to give robust performance on a wide range of problems with varying scaling and
potentially unbounded support. Furthermore, the target program may contain unknown constraints,
implicitly defined by the generative model, and variables whose type is unknown (i.e. they may be
continuous or discrete).

On the other hand, the availability of the target source code in a PPS presents opportunities to
overcome these issues and go beyond what can be done with existing BO packages. BOPP exploits
the source code in a number of ways, such as optimizing the acquisition function using the original
generative model to ensure the solution satisfies the implicit constaints, performing adaptive domain
scaling to ensure that GP kernel hyperparameters can be set according to problem-independent
hyperpriors, and defining an adaptive non-stationary mean function to support unbounded BO.

Together, these innovations mean that BOPP can be run in a manner that is fully black-box from the
user’s perspective, requiring only the identification of the target variables relative to current syntax
for operating on arbitrary programs. We further show that BOPP is competitive with existing BO
engines for direct optimization on common benchmarks problems that do not require marginalization.

2 Background

2.1 Probabilistic Programming

Probabilistic programming systems allow users to define probabilistic models using a domain-specific
programming language. A probabilistic program implicitly defines a distribution on random variables,
whilst the system back-end implements general-purpose inference methods.

PPS such as Infer.Net [16] and Stan [4] can be thought of as defining graphical models or factor
graphs. Our focus will instead be on systems such as Church [9], Venture [15]], WebPPL [10], and
Anglican [29], which employ a general-purpose programming language for model specification. In
these systems, the set of random variables is dynamically typed, such that it is possible to write
programs in which this set differs from execution to execution. This allows an unspecified number
of random variables and incorporation of arbitrary black box deterministic functions, such as was
exploited by the simulate function in Figure |2} The price for this expressivity is that inference
methods must be formulated in such a manner that they are applicable to models where the density
function is intractable and can only be evaluated during forwards simulation of the program.

One such general purpose system, Anglican, will be used as a reference in this paper. In Anglican,
models are defined using the inference macro defquery. These models, which we refer to as queries
[9], specify a joint distribution p(Y, X) over data Y and variables X. Inference on the model is
performed using the macro doquery, which produces a sequence of approximate samples from
the conditional distribution p(X|Y") and, for importance sampling based inference algorithms (e.g.
sequential Monte Carlo), a marginal likelihood estimate p(Y").

Random variables in an Anglican program are specified using sample statements, which can be
thought of as terms in the prior. Conditioning is specified using observe statements which can be
thought of as likelihood terms. Outputs of the program, taking the form of posterior samples, are
indicated by the return values. There is a finite set of sample and observe statements in a program
source code, but the number of times each statement is called can vary between executions. We refer
the reader tohttp://www.robots.ox.ac.uk/~fwood/anglican/|for more details.

2.2 Bayesian Optimization

Consider an arbitrary black-box target function f: 1 — R that can be evaluated for an arbitrary point
6 € ¥ to produce, potentially noisy, outputs w € R. BO [19][14] aims to find the global maximum
0* = argmax f (0). (1)
=
The key idea of BO is to place a prior on f that expresses belief about the space of functions within
which f might live. When the function is evaluated, the resultant information is incorporated by
conditioning upon the observed data to give a posterior over functions. This allows estimation
of the expected value and uncertainty in f (0) for all § € . From this, an acquisition function
¢ : 9 — R is defined, which assigns an expected utility to evaluating f at particular €, based on the
trade-off between exploration and exploitation in finding the maximum. When direct evaluation of f
is expensive, the acquisition function constitutes a cheaper to evaluate substitute, which is optimized
to ascertain the next point at which the target function should be evaluated in a sequential fashion.
By interleaving optimization of the acquisition function, evaluating f at the suggested point, and
updating the surrogate, BO forms a global optimization algorithm that is typically very efficient in the
required number of function evaluations, whilst naturally dealing with noise in the outputs. Although
alternatives such as random forests [[13| 3] or neural networks [26] exist, the most common prior
used for f is a GP [22]. For further information on BO we refer the reader to the recent review by
Shabhriari et al [24]].

3 Problem Formulation

Given a program defining the joint density p(Y, X, 0) with fixed Y, our aim is to optimize with
respect to a subset of the variables # whilst marginalizing out latent variables X

0* = argmax p(0]Y) = argmax p(Y,0) = argmax / p(Y, X,0)dX. ()
0ed 0ed 0ed

http://www.robots.ox.ac.uk/~fwood/anglican/
http://www.robots.ox.ac.uk/~fwood/anglican/

To provide syntax to differentiate between 6 and X, we introduce a new query macro defopt. The
syntax of defopt is identical to defquery except that it has an additional input identifying the
variables to be optimized. To allow for the interleaving of inference and optimization required
in MMAP estimation, we further introduce doopt, which, analogous to doquery, returns a lazy

sequence {é,”;l, Q;"n, 4k, }m=1,... where an C X are the program outputs associated with § = é;; and
each @, € RT is an estimate of the corresponding log marginal log p(Y, 6,) (see Section . The

sequence is defined such that, at any time, 8}, corresponds to the point expected to be most optimal
of those evaluated so far and allows both inference and optimization to be carried out online.

Although no restrictions are placed on X, it is necessary to place some restrictions on how programs
use the optimization variables 8§ = ¢1.x specified by the optimization argument list of defopt.
First, each optimization variable ¢ must be bound to a value directly by a sample statement with
fixed measure-type distribution argument. This avoids change of variable complications arising from
nonlinear deterministic mappings. Second, in order for the optimization to be well defined, the
program must be written such that any possible execution trace binds each optimization variable ¢y,
exactly once. Finally, although any ¢ may be lexically multiply bound, it must have the same base
measure in all possible execution traces, because, for instance, if the base measure of a ¢ were to
change from Lebesgue to counting, the notion of optimality would no longer admit a conventional
interpretation. Note that although the transformation implementations shown in Figure [3] do not
contain runtime exception generators that disallow continued execution of programs that violate these
constraints, those actually implemented in the BOPP system do.

4 Bayesian Program Optimization

In addition to the syntax introduced in the previous section, there are five main components to BOPP:

- A program transformation, g—g-marg, allowing estimation of the evidence p(Y, 6) at a fixed 6.
- A high-performance, GP based, BO implementation for actively sampling 6.

- A program transformation, g—g-prior, used for automatic and adaptive domain scaling, such
that a problem-independent hyperprior can be placed over the GP hyperparameters.

- An adaptive non-stationary mean function to support unbounded optimization.

- A program transformation, g—g—acgq, and annealing maximum likelihood estimation method to
optimize the acquisition function subject the implicit constraints imposed by the generative model.

Together these allow BOPP to perform online MMAP estimation for arbitrary programs in a manner
that is black-box from the user’s perspective - requiring only the definition of the target program in
the same way as existing PPS and identifying which variables to optimize. The BO component of
BOPP is both probabilistic programming and language independent, and is provided as a stand-alone
package{ﬂ It requires as input only a target function, a sampler to establish rough input scaling, and a
problem specific optimizer for the acquisition function that imposes the problem constraints.

Figure [3| provides a high level overview of the algorithm invoked when doopt is called on a query g
that defines a distribution p (Y, a, 8, b). We wish to optimize 6 whilst marginalizing out a and b, as
indicated by the the second input to g. In summary, BOPP performs iterative optimization in 5 steps

- Step 1 (blue arrows) generates unweighted samples from the transformed prior program g-prior
(top center), constructed by removing all conditioning. This initializes the domain scaling for 6.

- Step 2 (red arrows) evaluates the marginal p(Y,6) at a small number of the generated 6 by
performing inference on the marginal program g—marg (middle centre), which returns samples
from the distribution p (a, b|Y, #) along with an estimate of p(Y, 6). The evaluated points (middle
right) provide an initial domain scaling of the outputs and starting points for the BO surrogate.

- Step 3 (black arrow) fits a mixture of GPs posterior [22] to the scaled data (bottom centre) using a
problem independent hyperprior. The solid blue line and shaded area show the posterior mean and

+2 standard deviations respectively. The new estimate of the optimum 6* is the value for which
the mean estimate is largest, with * equal to the corresponding mean value.

"nttp://www.bitbucket.org/twgr/bopp

http://www.bitbucket.org/twgr/bo-mapp
http://www.bitbucket.org/twgr/bopp

(defopt q [yl [0]

(let [a (sample (p-a)) (defquery g-prior [y] X O m—————X X XX
6 (sample (p-0 a)) 1 (let [a (sample (p-a)) 1
b (sample (p-b a 0))] 0 (sample (p-0 a))]
(obzerve (lik a 6 b) y) 6)) 15 0 s o s o s
[a b])) 0
(defquery g-marg [y é] 0
(defquer —acq [1
(1egu[ay(:ampfe y(pga)) (et [a (sample (p-a)) ~ —
0 (sample (p-0 a))] 0 (observe<- (p-0 a) 0) ;;.20
(observe (factor) (¢ 0)) b (sample (p-b a 6))] s
0)) (observe (lik a 6 b) vy) o,
0
[a bl))

5 0 5 0 5 10 15
’ 5 4 H

Expected improvement
o o o o

5 -10 -5 0 ,5 10

0 ()nvxl
Figure 3: Overview of the BOPP algorithm, description given in main text. p—a, p—#, p—b and 1ik
all represent distribution object constructors. factor is a special distribution constructor that assigns
probability p(y) = y, in this case y = ().

- Step 4 (purple arrows) constructs an acquisition function ¢ : ¥ — R (bottom left) using the GP
posterior. This is optimized, giving the next point to evaluate Orexcts by performing annealed impor-
tance sampling on a transformed program g-acq (middle left) in which all observe statements
are removed and replaced with a single observe assigning probability () to the execution.

- Step 5 (green arrow) evaluates énext using g-marg and continues to step 3.

4.1 Program Transformation to Generate the Target

Consider the defopt query g in Figure the body of which defines the joint distribution p (Y, a, 6, b).
Calculating (2)) (defining X = {a, b}) using a standard optimization scheme presents two issues: 6 is
a random variable within the program rather than something we control and its probability distribution
is only defined conditioned on a.

We deal with both these issues simultaneously using a program transformation similar to the disin-
tegration transformation in Hakaru [31]]. Our marginal transformation returns a new query object,
g-marg as shown in Figure[3] that defines the same joint distribution on program variables and
inputs, but now accepts the value for as an input. This is done by replacing all sample statements
associated with 6 with equivalent observe<- statements, taking 6 as the observed value, where
observe<- is identical to observe except that it returns the observed value. As both sample and
observe operate on the same variable type - a distribution object - this transformation can always
be made, while the identical returns of sample and observe<- trivially ensures validity of the
transformed program.

4.2 Bayesian Optimization of the Marginal

The target function for our BO scheme is log p(Y, #), noting argmax f () = argmaxlog f (6) for
any f : 9 — RT. The log is taken because GPs have unbounded support, while p (Y, 0) is always
positive, and because we expect variations over many orders of magnitude. PPS with importance
sampling based inference engines, e.g. sequential Monte Carlo [29] or the particle cascade [21], can
return noisy estimates of this target given the transformed program g-marg.

Our BO scheme uses a GP prior and a Gaussian likelihood. Though the rationale for the latter is
predominantly computational, giving an analytic posterior, there are also theoretical results suggesting

that this choice is appropriate [2]. We use as a default covariance function a combination of a Matérn-
3/2 and Matérn-5/2 kernel. By using automatic domain scaling as described in the next section,
problem independent priors are placed over the GP hyperparameters such as the length scales
and observation noise. Inference over hyperparameters is performed using Hamiltonian Monte
Carlo (HMC) [6], giving an unweighted mixture of GPs. Each term in this mixture has an analytic
distribution fully specified by its mean function p?, : 1 — R and covariance function &/ : ¥ x4 — R,
where m indexes the BO iteration and 7 the hyperparameter sample.

This posterior is first used to estimate which of the previously evaluated éj is the most optimal, by
taking the point with highest expected value , 4}, = max;ci...m Zfil i, (6;). This completes the
definition of the output sequence returned by the doopt macro. Note that as the posterior updates
globally with each new observation, the relative estimated optimality of previously evaluated points
changes at each iteration. Secondly it is used to define the acquisition function ¢, for which we take

the expected improvement [25], defining ¢, (6) = \/ki (0,0) and ¢, (0) = %

CO) =D (i (8) = @3) @ (71, (8)) + 73, (8) & (s (6)) 3)

i=1

where ¢ and ® represent the pdf and cdf of a unit normal distribution respectively. We note that more
powerful, but more involved, acquisition functions, e.g. [L1], could be used instead.

4.3 Automatic and Adaptive Domain Scaling

Domain scaling, by mapping to a common space, is crucial for BOPP to operate in the required
black-box fashion as it allows a general purpose and problem independent hyperprior to be placed
on the GP hyperparameters. BOPP therefore employs an affine scaling to a [—1, 1] hypercube for
both the inputs and outputs of the GP. To initialize scaling for the input variables, we sample directly
from the generative model defined by the program. This is achieved using a second transformed
program, g—prior, which removes all conditioning, i.e. observe statements, and returns 6. This
transformation also introduces code to terminate execution of the query once all § are sampled,
in order to avoid unnecessary computation. As observe statements return nil, this transforma-
tion trivially preserves the generative model of the program, but the probability of the execution
changes. Simulating from the generative model does not require inference or calling potentially
expensive likelihood functions and is therefore computationally inexpensive. By running inference
on g-marg given a small number of these samples as arguments, a rough initial characterization of
output scaling can also be achieved. If points are observed that fall outside the hypercube under the
initial scaling, the domain scaling is appropriately updatecﬂ so that the target for the GP remains the
[—1, 1] hypercube.

4.4 Unbounded Bayesian Optimization via Non-Stationary Mean Function Adaptation

Unlike standard BO implementations, BOPP is not provided with external constraints and we therefore
develop a scheme for operating on targets with potentially unbounded support. Our method exploits
the knowledge that the target function is a probability density, implying that the area that must be
searched in practice to find the optimum is finite, by defining a non-stationary prior mean function.
This takes the form of a bump function that is constant within a region of interest, but decays rapidly
outside. Specifically we define this bump function in the transformed space as

0 if r <rg
log(T—Te) + ﬁ otherwise

Too—Te

4)

Mprior (T; Te, roo) = {

where 7 is the radius from the origin, 7. is the maximum radius of any point generated in the initial
scaling or subsequent evaluations, and r, is a parameter set to 1.57, by default. Consequently, the
acquisition function also decays and new points are never suggested arbitrarily far away. Adaptation
of the scaling will automatically update this mean function appropriately, learning a region of interest
that matches that of the true problem, without complicating the optimization by over-extending

2 An important exception is that the output mapping to the bottom of the hypercube remains fixed such that
low likelihood new points are not incorporated. This ensures stability when considering unbounded problems.

5 evaluations 10 evaluations 20 evaluations 50 evaluations
-20 -20 -20 -20

< 80 -30 < -30 <-30

g'(Y-, 0)
(Y,
p(Y,

;P(Y-,

-40 -40

40 N 40
-50 {\ -50 -50 -50

-4
0.3 0.1 0.02 610
0.015
0.2 4
o [0.05 o 0.01]

01 0.005 J\ 2
0 0 0 0

5 25 0 25 5 5 25 0 25 5 5 25 0 25 5 5 25 0 25 5

[% [4 [4 [4

Figure 4: Convergence on an unconstrained bimodal problem with p (#) = Normal(0,0.5) and
p(Y]0) = Normal(5 — |0],0.5) giving significant prior misspecification. The top plots show a
regressed GP, with the solid line corresponding to the mean and the shading shows + 2 standard
deviations. The bottom plots show the corresponding acquisition functions.

Branin 0 Hartmann 6D SVM on-grid LDA on-grid
10 o \ -BgPP mean
10 1 BOPP median
b 10 -SMAC
S S CIIIIN D] Spearmint
§ oo § NN
- 0
2 N 10 T
10
-5
10 0 50 100 150 200 0 50 100 150 200 0 25 50 75 100 0 10 20 30 40 50
Iteration Iteration Iteration Iteration

Figure 5: Comparison of BOPP used as an optimizer to prominent BO packages on common
benchmark problems. The dashed lines shows the final mean error of SMAC (red), Spearmint (green)
and TPE (black) as quoted by [[7]. The dark blue line shows the mean error for BOPP averaged over
100 runs, whilst the median and 25/75% percentiles are shown in cyan. Results for Spearmint on
Branin and SMAC on SVM on-grid are omitted because both BOPP and the respective algorithms
averaged zero error to the provided number of significant figures in [7]].

this region. We note that our method shares similarity with the recent work of Shahriari et al [23]],
but overcomes the sensitivity of their method upon a user-specified bounding box representing soft
constraints, by initializing automatically and adapting as more data is observed.

4.5 Optimizing the Acquisition Function

Optimizing the acquisition function for BOPP presents the issue that the query contains implicit
constraints that are unknown to the surrogate function. The problem of unknown constraints has
been previously covered in the literature [8, [12] by assuming that constraints take the form of a
black-box function which is modeled with a second surrogate function and must be evaluated in
guess-and-check strategy to establish whether a point is valid. Along with the potentially significant
expense such a method incurs, this approach is inappropriate for equality constraints or when the
target variables are potentially discrete. For example, the Dirichlet distribution in Figure 2] introduces
an equality constraint on powers, namely that its components must sum to 1.

We therefore take an alternative approach based on directly using the program to optimize the
acquisition function. To do so we consider a transformed program g-acgq that is identical to g-prior
(see Section , but adds an additional observe statement that assigns a weight () to the
execution. By setting ((6) to the acquisition function, the maximum likelihood corresponds to
the optimum of the acquisition function subject to the implicit program constraints. We obtain a
maximum likelihood estimate for g-acq using a variant of annealed importance sampling [18] in
which lightweight Metropolis Hastings (LMH) [28]] with local random-walk moves is used as the
base transition kernel.

7000

100}
6000 + — _2
> —
55000 o
o 10 't
o _ <2
9 £ :
4000 / 12 —BOPP
—PMMH-LMH
| PMMH-RMH
3000 U : : 102 : :
0 50 100 150 0 50 100 150
Iteration Iteration

Figure 6: Convergence for transition dynamics parameters of the pickover attractor in terms of the
cumulative best logp (Y,) (lefr) and distance to the “true” 6 used in generating the data (right).
Solid line shows median over 100 runs, whilst the shaded region the 25/75% quantiles.

5 Experiments

We first demonstrate the ability of BOPP to carry out unbounded optimization using a 1D problem
with a significant prior-posterior mismatch as shown in Figure] It shows BOPP adapting to the
target and effectively establishing a maxima in the presence of multiple modes. After 20 evaluations
the acquisitions begin to explore the right mode, after 50 both modes have been fully uncovered.

Next we compare BOPP to the prominent BO packages SMAC [13l], Spearmint [[25] and TPE [3] on a
number of classical benchmarks as shown in Figure[5] These results demonstrate that BOPP provides
substantial advantages over these systems when used simply as an optimizer on both continuous and
discrete optimization problems. In particular, it offers a large advantage over SMAC and TPE on
the continuous problems (Branin and Hartmann), due to using a more powerful surrogate, and over
Spearmint on the others due to not needing to make approximations to deal with discrete problems.

Finally we demonstrate performance of BOPP on a MMAP problem. Comparison here is more
difficult due to the dearth of existing alternatives for PPS. In particular, simply running inference
on the original query does not return estimates for p (Y, #). We consider the possible alternative of
using our conditional code transformation to design a particle marginal Metropolis Hastings (PMMH,
[L]) sampler which operates in a similar fashion to BOPP except that new 6 are chosen using a MH
step instead of actively sampling with BO. For these MH steps we consider both LMH [28]] with
proposals from the prior and the random-walk MH (RMH) variant introduced in Section[4.5] Results
for estimating the dynamics parameters of a chaotic pickover attractor, while using an extended
Kalman smoother to estimate the latent states are shown in Figure[6] Model details are given in the
supplementary material along with additional experiments.

6 Discussion and Future Work

We have introduced a new method for carrying out MMAP estimation of probabilistic program
variables using Bayesian optimization, representing the first unified framework for optimization
and inference of probabilistic programs. By using a series of code transformations, our method
allows an arbitrary program to be optimized with respect to a defined subset of its variables, whilst
marginalizing out the rest. To carry out the required optimization, we introduce a new GP-based BO
package that exploits the availability of the target source code to provide a number of novel features,
such as automatic domain scaling and constraint satisfaction.

The concepts we introduce lead directly to a number of extensions of interest, including but not
restricted to smart initialization of inference algorithms, adaptive proposals, and nested optimization.
Further work might consider maximum marginal likelihood estimation and risk minimization. Though
only requiring minor algorithmic changes, these cases require distinct theoretical considerations.

Acknowledgements

Tom Rainforth is supported by a BP industrial grant. Tuan Anh Le is supported by a Google
studentship, project code DF6700. Frank Wood is supported under DARPA PPAML through the U.S.
AFRL under Cooperative Agreement FA8750-14-2-0006, Sub Award number 61160290-111668.

References

(1]

[2

—

(3]
(4]

[5

—

[6
(71

—_

[8

—

(91
(10]
(11]

[12]

[13]
(14]
[15]
[16]
(17]
(18]
(19]

[20]
(21]

[22]
(23]

[24]
[25]
[26]
(27]
(28]
[29]

(30]
(31]

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. J Royal Stat.
Soc.: Series B (Stat. Methodol.), 72(3):269-342, 2010.

J. Bérard, P. Del Moral, A. Doucet, et al. A lognormal central limit theorem for particle approximations of
normalizing constants. Electronic Journal of Probability, 19(94):1-28, 2014.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
NIPS, pages 2546-2554, 2011.

B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A. Brubaker, J. Guo, P. Li,
and A. Riddell. Stan: a probabilistic programming language. Journal of Statistical Software, 2015.

K. Gsilléry, M. G. Blum, O. E. Gaggiotti, and O. Francois. Approximate Bayesian Computation (ABC) in
practice. Trends in Ecology & Evolution, 25(7):410-418, 2010.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics letters B, 1987.

K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards
an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS workshop on
Bayesian Optimization in Theory and Practice, pages 1-5, 2013.

J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. Cunningham. Bayesian optimization with
inequality constraints. In /ICML, pages 937-945, 2014.

N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: a language for
generative models. In UAI, pages 220-229, 2008.

N. D. Goodman and A. Stuhlmiiller. The Design and Implementation of Probabilistic Programming
Languages. 2014.

J. M. Hernandez-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search for efficient
global optimization of black-box functions. In NIPS, pages 918-926, 2014.

J. M. Hernédndez-Lobato, M. A. Gelbart, R. P. Adams, M. W. Hoffman, and Z. Ghahramani. A general
framework for constrained bayesian optimization using information-based search. JMLR, 17(160):1-53,
2016.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In Learn. Intell. Optim., pages 507-523. Springer, 2011.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions.
J Global Optim, 13(4):455-492, 1998.

V. Mansinghka, D. Selsam, and Y. Perov. Venture: a higher-order probabilistic programming platform with
programmable inference. arXiv preprint arXiv:1404.0099, 2014.

T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer .NET 2.4, Microsoft Research Cambridge, 2010.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

R. M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125-139, 2001.

M. A. Osborne, R. Garnett, and S. J. Roberts. Gaussian processes for global optimization. In 3rd
international conference on learning and intelligent optimization (LION3), pages 1-15, 2009.

B. Paige and F. Wood. A Compilation Target for Probabilistic Programming Languages. ICML, 32, 2014.

B. Paige, F. Wood, A. Doucet, and Y. W. Teh. Asynchronous anytime sequential monte carlo. In NIPS,
pages 3410-3418, 2014.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

B. Shahriari, A. Bouchard-Coté, and N. de Freitas. Unbounded Bayesian optimization via regularization.
AISTATS, 2016.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of the loop: A
review of Bayesian optimization. Proceedings of the IEEE, 104(1):148-175, 2016.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning algorithms.
In NIPS, pages 2951-2959, 2012.

J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Ali, R. P. Adams, et al.
Scalable Bayesian optimization using deep neural networks. In ICML, 2015.

J.-W. van de Meent, B. Paige, D. Tolpin, and F. Wood. Black-box policy search with probabilistic programs.
In AISTATS, pages 1195-1204, 2016.

D. Wingate, A. Stuhlmueller, and N. D. Goodman. Lightweight implementations of probabilistic program-
ming languages via transformational compilation. In AISTATS, pages 770-778, 2011.

F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach to probabilistic programming inference.
In AISTATS, pages 2-46, 2014.

C. Xie. Interactive heat transfer simulations for everyone. The Physics Teacher, 50(4), 2012.

R. Zinkov and C.-C. Shan. Composing inference algorithms as program transformations. arXiv preprint
arXiv:1603.01882, 2016.

	Introduction
	Background
	Probabilistic Programming
	Bayesian Optimization

	Problem Formulation
	Bayesian Program Optimization
	Program Transformation to Generate the Target
	Bayesian Optimization of the Marginal
	Automatic and Adaptive Domain Scaling
	Unbounded Bayesian Optimization via Non-Stationary Mean Function Adaptation
	Optimizing the Acquisition Function

	Experiments
	Discussion and Future Work

